
5943

On the optimality of parsing in dynamic dictionary based data compression

Yossi Matias * Siileyman Cenk Sahinalp i

We consider the parsing method to be used in dynamic dic-
tionary based data compression. We show that (1) the com-
monly used greedy parsing may result in far from optimal
compression with respect to the dictionary in use; (2) a one-
lookahead greedy parsing scheme obtains optimality with re-
spect to any dictionary construction schemes that satisfy the
prefix property; and (3) there is a data structure which en-
ables efficient on-line implementation of this one-lookahead
method.

Summary

The most common compression algorithms used in prac-
tice are the on-line dictionary schemes. These algo-
rithms are based on maintaining a dictionary of strings
that are called phrases. They parse the input string T
incrementally, i.e., partition T to non-overlapping sub-
strings that appear in the dictionary V so that longer
prefixes of T are compressed in successive iterations.
These substrings are represented in the compressed
string T’ by the respective dictionary codewords.

Most practical compression algorithms use dynamic
dictionary construction schemes, introduced by Ziv and
Lempel [ZL77, ZL78], in which the dictionary is initially
empty and is constructed incrementally, in an on-line
fashion: as the input is read, some of its substrings
are chosen as dictionary phrases and added to the
dictionary.

The most popular dictionary based compression al-
gorithms are the LZ78 method [ZL78], its LZW vari-
ant [WelS4], and the LZ77 method [ZL77]. Most dy-
namic schemes, including the above, satisfy the prefix
property: for any given phrase in the dictionary, all its
prefixes are also phrases in the dictionary.

‘Department of Computer Science, Tel-Aviv University, Israel,
and Information Sciences Research Center, Bell Laboratories. e-
mail: matias@math.tau.ac.il. Research supported in part by an
Alon Fellowship, by the Israel Science Foundation founded by The
Academy of Sciences and Humanities, and by the Israeli Ministry
of Science.

tDepartment of Computer Science, University of Warwick,
UK; and Center for BioInformatics, University of Pennsylvania,
USA. e-mail: cenk@dcs.warwick.ac.uk. Research supported in
part by ESPRIT LTR Project no. 20244 - ALCOM-IT, and
NATO Research Grant CRG.972175.

We consider the parsing method that is to be used
once the dictionary construction scheme is selected. In
particular, given a dictionary construction scheme, we
consider whether there is an efficient dynamic parsing
method that achieves optimality with respect to this
scheme on all input strings. We call a parsing method
optimal with respect to a given dictionary construction
scheme, if it obtains the smallest number of phrases
possible on any input string. Under certain conditions
(which apply LZ78, LZW, and other existing schemes)
this phrase optimality translates into bit optimality.

For static dictionaries, in which the phrases are
fixed before the parsing starts, the issue of parsing op-
timality has been resolved for prefix closed dictionaries.
Greedy parsing is far from optimal: there are strings
that can be parsed to m phrases using a given (static)
dictionary, for, which greedy parsing with the same dic-
tionary obtains 0(m3/2) phrases [GS85]. On the other
hand, finding optimal parsing for prefix-closed dictio-
naries can be done in linear time.

We show that greedy parsing can be far from op-
timal for dynamic dictionary construction schemes, by
considering the LZW scheme, and showing a gap similar
to the static case. We also show that a one-lookahead
scheme, denoted as flexible parsing, or 3P, obtains opti-
mality with respect to any dictionary scheme satisfying
the prefix property. We also introduce a data structure
which implements 3P for the LZW dictionary in amor-
tized O(1) time per character, and space proportional
to the size of the compressed output, which are both
optimal.

Below we overview some of our results. More
details can be found in [MS97], where we also show that
greedy parsing is optimal for dictionaries with the suffix
property, and explore the use of k-lookahead schemes
(k > 1) for parsing optimality in dictionaries without
the prefix property. An experimental study of the 3P
scheme is given in [MRs98].

Non-optimality of Greedy Parsing.
A greedy parser selects the longest advancing prefix of
the uncompressed portion of the text in every iteration.
There are input strings which can be parsed to some
O(l) phrases, and be represented by O(.!loge) bits by
using the LZW dictionary for which greedy parser ob-

5944

tains R(13i2) phrases and outputs sl(.13/2 loge) bits. which starts at E’(i) -t 1 end at position L’(i). We

We first construct a string T which uses an ar- show by induction on i that L(i) > L’(i). ru’otice that
bitr&ly large dictionary c = {0,1,. . . , k, k + 1, k + TIE’(i) + 1 : L’(i)] is a phrase and E’(i) 5 L’(i - 1) 5
2,. . . , k + A}, where k is a prime number. Let R be L(i - 1). Hence, because D is a prefix dictionary, either

the substring I,. . . , k, and let Ri denote the concate- (1) T[E(i - 1) + 1 : E’(i)] is a phrase in 27, hence by

nation of i copies of the string R. Let S be the sub- definition of 3P, L(i) 2 L’(i), or (2) E’(i) 5 E(i - l),

string 1,2,1,2,3,.. ., 1,2,. . . , k, and let T be the con- which completes the induction.

catenationof0,S:k+l,0,R1,1,k+2,0,RZ,1 ,..., k + Efficient implementation of 3P.
~,o,R~,l. There is a data sb-ucture which can implement the LZW

The LZW dictionary scheme first processes dictionary construction with 3P in amortized 0(1) time

the substring S, and inserts the substrings per ChaTacteT, using 0(IT’I) space.

(Ol), (12), (21), (123), (31), . . ., (12.. . k) in V with The data structure maintains the trie, 7, of phrases
respective codewords k + &+ 1, k + fi+ 2,. . . : 3k - 2. as in the original LZW algorithm; in addition, it
Then it processes the substrings (k + i,O, Ri, 1) for also maintains ‘7, the compressed trie of the re-
i= .., 1 m: for each such substring it first inserts
in D,’ (l(k + i)), then inserts ((k + i)Ol . . .i + 1); and

verses of all phrases ‘inserted in the 7.
string S = s1:sg its reverse S’ is teiEini ,-.-,&r ’

because k is prime, then inserts all substrings of Ri of s,,, ~~-1,. . . , sg, ~1.) For each node v in 7, there is a
size i + 1. Altogether there will be k + 2 insertions to corresponding node v* in 7’, linked to v, which repre-
‘D, and hence no more than (3/2) log k + O(1) bits are sents the reverse of the phrase represented by TJ. As in
required to represent a codeword at any iteration. the case of the 7 alone, the insertion of a phrase S to

For each substring inserted in D, LZW outputs one this data structure takes O(lSi) time. Given a dictio-

codeword, hence the total number of codewords output nary phrase S, and the node n which represents S in

by LZW for T is at least k3i2. This implies that the 7, one can find out whether the substring obtained by

total number of bits it outputs is at least k3j2 log k. An concatenating S with any character a is in D, by check-

optimal parser still obtains 2k - 1 phrases for S; however ing out if there is an edge from n with corresponding

it obtains only one phrase for every occurrence of R in character a in O(1) time. Similarly checking whether

T. Hence the number of phrases it outputs for each & S[2 : ISI] is in D requires O(1) time time by going from

is no more than i + 2, and the total number of phrases it n to n’, the node representing reverse of S in 7’, and

outputs for T is no more than 3k, and the total number checking if the parent of n’ represents S[2 : ISI]‘. The

of bits it outputs is no more than (9/2)k log k + O(k). total space needed is O(lDl) = O(T’).

Optimality of 3P.
We now turn our attention to 3P. ,Rather than

References

greedily parsing the longest advancing prefix of the
uncompressed portion of the text, 3P parses the prefix
which results in the longest advancement in the next
iteration.
For any dictionary construction scheme which builds
a dictionary that satisfies the prej?c property at all
iterations, fletible parsing obtains the minimum number
of phrases out of any input string T.

Let Pd be a dictionary construction scheme that
builds a dictionary satisfying the prefix property at,
all iterations, and let C and C’ be the compression
algorithms that respectively use 3P, and any other
parsing scheme together with Pd. Our claim is that the
number of codewords output by C on any given input T
is at most that output by C’.

Let the ith phrase of T obtained by C end at position
E(i), and the ith phrase obtained by C’ end at position
E’(i). Similarly, let the longest phrase in D which starts
at E(i)+1 end at position L(i) and let the longest phrase

[GS85] M. E. Gonzales-Smith and J. A. Storer. Parallel
algorithms for data compression. Journal of the A CM,
32(2):344-373, April 1985.

[ME981 Y. Matias and N. Rajpoot and S. C. Sahiialp Im-
plementation and experimental evaluation of flexible
parsing for dynamic dictionary based data compres-
sion. Workshop on Algorithmic Engineering, 1998.

[MS971 Y. Matias and S. C. Sahinalp Optimal parsing for
dictionary based data compression. Bell Laboratories
technical report, June 1997.

we1841 T.A. Welch. A technique for high-performance data
compression. IEEE Computer, pages 8-19, January
1984.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Dansactions on
Information Theory, IT-23(3):337-343, May 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual
sequences via variable-rate coding. IEEE Dansuctions
on Information ‘Theory, IT-24(5):530-536, September
1978.

