
Compact Grid Layouts of Multi-Level Networks *

S. Muthukrishnan + Mike Paterson t Siileyman Cenk Sahinalp 5 Torsten Sue1 n

Abstract

We consider the problem of generating layouts of multi-
level networks, in particular, switching, sorting, and inter-
connection networks, as compactly as possible on VLSI grids.
Besides traditional interest in these problems motivated by
interconnection topologies in parallel computing and switch-
ing circuits in telecommunications, there is renewed interest
in such layouts in the context of ATM (Asynchronous Trans-
fer Mode) switches. Our results improve on the existing area
bounds for these networks by factors of up to three.

1 Introduction

We study the problem of laying out multi-level networks
in general, and various switching, sorting and interconnec-
tion networks in particular, on a VLSI chip. The goal is to
produce compact layouts, that is, layouts with the smallest
possible grid area for realizing a given network. We present
layouts for different types of “mappings” (formally defined
later); they form building blocks for realizing any multi-level
network. We use our building blocks and their special ge-
ometry, and combine them with high-level reorganization
techniques to obtain (near-)optimal layouts for various sort-
ing, switching and interconnection networks.

1.1 Specific N&works and Motivation

The specific networks that we consider are the butterfly,
the Benes network, the bit&c sorting network, and gen-
eral sorting networks. The basic elements in these networks
are comparators or switches. These networks have been

studied in many contexts (see [17, 19, 20, 261). They are
used as interconnection networks, or as switching networks
in telecommunications. Motivated by the potential for mas-
sive parallelism, VLSI layouts of these networks have been
studied extensively in the literature; see, e.g., [28, 201.

There is renewed interest now in layouts of switching
and sorting networks on VLSI circuits within ATM (Asyn-
chronous Transfer Mode), a promising network technology.
Many ATM switches use the butterfly network and its re-
lated networks and sorters in order to route connections; see
[30] for an overview, and [6] for generic ATM switch systems
with such networks. Such ATM switches have been designed
OI developed at Bellcore (named Sunshine [4]), AT&T Bell
Labs (named Starlite [13]), Lucent Technologies [16], Tele-
corn Australia Research Labs [23], and elsewhere (for exam-
ple, Starburst [31]). For high speed and performance, these
ATM switches are fabricated as VLSI chips, with layouts
based on Batcher’s sorters, Benes networks, or banyan net-
works.

Much of the research on VLSI layouts of such networks
has been inspired by the stringent need to be compact, and
the focus has therefore been on trying to optimize the con-
stant factor in the area of layouts, rather than obtaining
merely big-0 optimal bounds. Our results improve the area
required by the best known constructions by factors rang-
ing from 2 to 3. In practice, our results may translate to
a smaller percentage of reductions in the actual chip area;
however, even small reductions may be important.

1.2 The VLSI Grid Model

A layout of a network on an integer grid ~R!C is a map-
ping of the nodes of the network to grid points m [I R] x
[I.. c]. We concentrate on layouts whose input nodes are
all on column 1 and whose output nodes are all on column
C. The connections in the network are mapped to edge-
disjoint paths on the grid. Two paths are allowed to cross
at a grid point. A turn of a path at a grid point is called a
bend.

Note that at most two paths can meet at a grid point,
which implies that networks are restricted to containing de-
vices of degree at most 4. AU our communication networks
are of this form, as they are based on 2-input, Z-output com-
parator and switching elements. When two paths meet at
a grid point, the meeting may be straight 01 knock-knee: in
the former, neither path changes direction at the intersec-
tion point, while in the latter, both paths change directions,
that is, there are two bends. Our goal is to minimize the
area, RC, of the layouts. The grid model for layouts was

Coppight ACM 1999 l-581 13.067.8199105...$5.00

455

formalized in [27] for the VLSI setting.

1.3 Results for Specific Networks

We present the following optimal or near-optimal lay-
outs for well-known networks, which improve upon the best
previously known bounds.

Butterfly Networks. We present layouts of N-input but-
terfly switching/comparator networks of area’ (2/3)N2 and
(1/2)N2 for the cases when the order of the inputs and out-
puts is fixed or can be arbitrarily permuted, respectively; in
both cases, the leading constant is the best possible.

The best previously known upper bound for the fixed-
order case was the N2 result that follows from the work of
Wise [29]. (See also [l] for bounds when the inputs and
outputs may be anywhere within the grid area.) Our first
bound provides the standard interface of a stand-alone but-
terfly, while the second bound is useful when the butterfly is
used as part of a larger circuit in which we can optimize the
wiring. For example, using the second construction, we ob.
tain a layout of an N-input dual Benes network with optimal
N= layout area.

Bateher’s Bitonic Sorting Network. We present a lay-
out of Batch&s bitonic sorter that use& a total area of
less than 1.39N’. Since these sorters are used in ATM
switches, some attention has recently been given to produc-
ing compact layouts. Bowever, the best previous layout of
the bitonic sorter still required 3NZ area [S, 91, which im-
proved upon earlier bounds in [7, 291.

Optimal Sorters. We address the question of determin-
ing the “best” sorter in general. There are known sorting
networks of area N’, but they use n(N’) comparators [14],
and thus the (logical) depth of the network is Q(N). In cou-
trast, Batcher’s sorters use only O(N log’ N) comparators
with O(log’ N) comparators on any path. A lower bound of
N2 for the area is known from [9].

We present a layout based on Columnsort that achieves
N2 area, and that can be used with any sorter as a sub-
routine. By combining Columnsort with a straightforward
layout of the AKS sorter [Z], we obtain a layout area of N2
with O(log N) comparators on any path. Thus, this con-
struction is optimal within a lower order additive term in
the area, and asymptotically optimal in terms of the size
and depth of the network. In fact, using the more relaxed
definition of layout area in [i’] the bound becomes g-N’,
thus establishing a separation between the two different def-
initions of layout area.

1.4 General Techniques for Multi-Level Network Layouts

We develop the following general approach. First we de-
sign layouts of arbitrary networks of one or two levels. Here,
a level is a permutation wiring connecting two “columns”
of active elements. Then, by using these as local building
blocks, we generate layouts of entire multi-level networks.
Both these steps are nontrivial, and an overview follows.

Consider any network of one or two levels. We consider
three different types of ‘mappings” from their inputs to their
outputs (see Section 3). These mappings depend on whether
the inputs and outputs are fixed OI can be reordered arbi-
trarily, and on whether intermediate nodes may be arbitrar-
ily placed within the layout or not. We use novel and exist-
ing algorithms to present layouts for each of these mappings
which are tight up to at most two additional columns.

Any multi-level network can be laid out by combining
(concatenating) these mappings; however, this does not au-
tomatically lead to an optimal layout for the entire network.
We use two additional techniques that lead to more compact
layouts. The first technique is to rearrange a multi-level net-
work in au isomorphic manner. For example, if the network
compares a set of far-apart inputs in several successive lev-
els, one may permute the input and then have several levels
of comparisons between inputs that are close. We use such
remappings of the inputs repeatedly in our layouts, and ob-
tain significant savings in area. We point out that this idea
is not really new, and that it has been used in the context of
the butterfly to improve the locality of the FFT and bitonic
sorting algorithms on parallel machines; see, e.g., [5, 241.
The second technique is to lay out building blocks (of one
OI two levels) into non-rectangular geometric shapes, which
may then be fitted together more efficiently. We use this
principle with triangular and parabolic blocks, and this too
results in significant savings. The combination of these two
ides gives the best known results for the specific networks
that we consider, and should also prove useful for producing
tighter layouts of other multi-level networks.

We omit some details of the proofs and use figures and
geometric intuition to illustrate some of our ideas. At the
beginning of his paper [29], Wise says, “This paper offers
two results that can both be described as pictures. They
are Figures 1 and 3. The perceptive readers may stop here,
since the remainder of this paper only describes them.” The
same is not quite true here since our structured approach to
deriving our layouts should be of independent interest. For
example, the problem of laying out one of the ‘mappings”
for a level turns out to be the problem of finding disioiut
paths on grid graphs - another pioblem with a lot if hisiory;
see, e.g., (10, 12, 11, 15, 321.

Note that all our con&&ions use knock-knees. Knock-
knees have been used in many other papers on VLSI layouts
(see Chapter 9 in [20], and [21]). From the VLSI techuol-
ogy point of view, the horizontal and vertical lines of the
grid model are laid out on two different layers. Bends,
knock-knees and switches all operate on both layers and
hence, bends and knock-knees are no harder to fabricate
than switches. Nevertheless, like switches, bends and knock-
knees are also a. technological resource, and the number of
bends (and hence the Dumber of knock-knees) in the con-
structions that we use as building blocks for the layouts of
switching and sorting networks is a small constant per con-
nection.

2 Preliminaries

Given M = 2”’ for some m 2 1, a butterfly interconnec-
tion network Sm has M input nodes I”‘[O, _, M - 11, and
M output nodes O”[O, , M - 11, and consists of m levels,
BE, Bzml,. , Sr. Each level I$” is a bipartite graph with
M input and M output nodes. Each input node I;“[i] of 67

2 Tted to two output nodes O;‘[i], and O$], where

I IS obtained by complementing the eth least significant bit
of i.

The butterfly interconnection network can be used as a
building block in switching (or comparator) networks if each
node is replaced by a two-input, twwoutp& switch (or com-
parator). In particular, this implies that the inputs and out-
puts now each consist of N = 2M lines. Such a network is
called a butterfly switching(comporator) network. Switching
networks of particular interest are the Benes network and its

456

dual. A Benes network of N = 2M input and output lines
is a concatenation of butterfly levels Sz, Sz-,, , By, 8;“,
lir, , LZE in that order, that is, it consists of two complete
butterfly networks connected end to end, in which the sec-
ond butterfly has reversed levels. The dual Benes is formed
similarly by a reversed butterfly followed by a butterfly.
These Benes networks are of interest since they are rear-
rangeable (see, for example, [26]). We omit the standard
definition of Batcher’s bitonic sorter; see, e.g., [3. 171.

3 Optimal Basic Layouts

In this section, we identify three layout problems defined
by “mappings”. These mappings model one or two levels of
wiring and comparators (or switches) in a multi-level net-
work. The mappings model: (1) an arbitrary wiring from
the outputs of one level of comparators to the inputs of the
next, when the comparators at each level are fixed within
their respective grid columns (Section 3.1); (2), the same as
(l), but the comparators at the second level may be moved
arbitrarily within their grid column (Section 3.2); and (3)
an arbitrary wiring from the outputs of level t? to the in-
puts of level e + 2, when the comparators at levels e and
e + 2 are fixed within their respective grid columns, but the
comparators at level e+ 1 may be moved around arbitrarily
(Section 3.3).’

3.1 Permutation Networks

This problem is defined a6 follows. On an integer grid,
we have R inputs and n outputs, whose rows are specified as
~1,. , rn and 31,. , sn respectively. Let f denote such an
input-output specification and a permutation on (1,. , n}.
The goal is to produce a layout of this permutation (that is,
connect each input i to output f(i) via a set of edge-disjoint
paths) such that all inputs, and all outputs, respectively, are
on the same column. Such a network is called a permutalion
network.

Given f, define the cutwidth under row i, denoted C<(f),
as I{j 1 7, 5 i < r,(J) or rf(,) 5 i < r,)I. The cutwidth of
the permutation f, denoted by C(f), is defined as maxi G(f).
We have Cf f) < n. The followinr holds (see llO1 for a
proof): any grid layout of f needs at least k(f)‘cdumns,
independent of the number of rows used. Since any non-
trivial permutation on n inputs requires at least n + 1 rows,
we eet a lower bound on the area of any layout of at least
(n i l)C(f).

The best known algorithms to lay out a Riven permuta-
tion network in opti& area run id O(n c(f)) &me and
result in O(n. C(f)) bends [IO, 321. What we show below is
that for any permutation one can construct a layout which
results in only O(1) bends per connection; for some of the
permutations used in our switching and sorting networks,
our layout results in optimal (n + l)C(f) area. To simplify
the rest of the discussion we assume that all inputs and out-
puts are located on n contiguous IOWB of the grid, although
our results apply to all possible row placements of inputs
and outputs.

Faster construction, using fewer bends. We consider
layouts in which we limit the number of bends used. For
all but the simplest permutations. most of the connections
require at least two bends, independent of the number of

IOWS and columns used. In what follows, we show layouts in
which we use at most four bends per connection.

Given a permutation f on { 1,. , n), consider the di-
rected graph C(f) with vertices V = {I,...,n + 1) and
edges E = {(i, f(i) + 1) 1 1 5 i 5 n). In G(j), every vertex
except n + 1 has outdegree one and every vertex except 1
has indegree one. For n + 1 the outdegree is zero, and for
1 the indegree is zero. Clearly, if G(f) has a Hamiltonian
path, then that path goes from 1 to n + 1.

In G(f), a path p is mazimol decreasing (maximal in-
creasing) if the sequence of vertex numbers along p is de-
creasing (increasing) and no extension of p has this property.

We are interested in the total number of maximal de-
creasing and maximal increasing paths, which we denote by
m(f); trivially, m(f) < n. The following result proves use-
;; ;f;;~‘ft~, w f or a number of permutations that

Theorem 1 There is an O(n) time algorithm to produce o
layout off using n + 1 rows and at most m(f) + 2 columns.
Each connection has at most four bends.

Proof: The layout uses rows 1,. , n + 1, where row i
contains input node I, and output node 0;. We use the
graph G(f) to determine an assignment of columns to con-
nections so that no two paths assigned to connections aver-
lap. The layout is in two parts: the first part produces its
outputs O:, ,OL in IOWS 2, _. , n + 1 respectively, while
the second part uses a single column to restore the outputs
to their proper final positions.

If G(f) has (i.e., is) a Hamiltonian path, the column a.-
signment to connections is ag follows. Consider the maximal
increasing path ending at n + 1, and starting at some j, For
each edge (i, f(i) + 1) on this path, we assign column 1 to
the connection from I, to Oic;, (in row f(i) + 1). Next we
find the maximal decreasing path ending at j,, and starting
at some j,. We assign column 2 to the connections corre-
sponding to edges on this path, and so on. The structure
of G(f) ensures that this procedure proceeds smoothly and
the resulting assignment is non-conflicting; the number of
columns used is clearly m(f). The output connections can
now be shifted back one row using a single extra column.

If G(f) does not have a Hamiltonian path, we determine
an intermediate permutation g, such that (1) G(g) has a
Hamiltonian path, (2) m(g) 5 m(f) + 1, and (3) f is the
composition of g and a permutation h, which has a layout
that uses a single column and which restores the outputs to
rows 1,. , n.

The permutation g is computed as follows. Consider
the oath II in G(f) that starts from vertex 1 and ends at
vert;x n $ 1. If‘-&(f) is not Hamiltonian there are nodes
which are not on this path. Because each such node has
both indegree and outdegree 1, it has to be on a cycle. Our
method relies on incorporating each such cycle into path p as
follows. We find the maximum j which is not on path p and
incorporate it into the path as follows. The edges (k, j + 1)
and (k’, j) in E are replaced by the new edges (k’, j + 1)
and (k,j). Thus the path from 1 which went along edge
(k,j + l), now takes the detour k,j, then around the cycle
that contained (k’,j),then k’,j + 1. This corresponds to
swapping the neighboring destination outputs j - 1 and 3,
i.e., whereas f(k) = j and f(k’) = j - 1, we have a new
permutation f’ where f’(k) = j - 1 and f’(k’) = j.

After this swap, we claim that all nodes on the original
cycle of node j will now be on p. We iteratively apply swaps
until all cycles are incorporated into p. Thii new graph G’
provides the permutation g and is Hamiltonian. Because

457

the swaps are local, we can show that m(g) < m(j) + 1.
and that the oermutation h can be laid out wine. a sin&
column, since’we only need to reorder the swappid output
nodes, and these do not overlap. I

There are permutations f that have layouts using fewer
than m(f) columns; hence, our construction is not always
optimal in area. Nevertheless, we will see that the con-
struction above is optimal for certain important classes of
permutations that are of particular interest to us (see Sec-
tion 4).

3.2 Pairing Network

We are given a grid with the inputs on the left side
numbered II, I,, , IZM, and the outputs on the right side
numbered 01,02,. ,OZM. where I, and 0; are in row i.
A set of M disjoint input pairs (lu,,ldi), where lui,id. E
{II,. , IZM) is given. The goal is to determine a one-t*
one mapping f of It.. ,I~M to 01,. , OZM such that, for
each i. f(lui) and f(ldi) are adjacent (that is, they differ by
oue); furthermore, we must find a layout of the permutation
network f. Such a network is called a pairing network. We
write N = 2M.

Consider the graph G on a linear array of N vertices, in
which there is au edge between nodes i and j if and only if
(Ii, I,) is an input pair for the pairing network; thus there
are A4 edges in all. The pair-cutwidth P(G) of the input
instance is the maximum number of crossing edges of G
between any pair of rows i and i + 1.

Theorem 2 In any layout of o pairing network, the number
of columns used is at least P(G) - 1, independent of the
number of rows used. There ia on algorithm to produce o
loyout of any pairing network in which the number of rows
is at most N + 1 and the number of columns is at most
P(G) + 3; this algorithm takes time O(N P(G)).

Proof: For the lower bound, we consider any i such that
P(G) edges of G cross between rows i and i + 1. Each edge
corresponds to a pair of inputs, of which at least one needs
to be taken xross a. vertical edge between rows i and i + 1
to bring them together, with the possible exception of one
pair which could be mapped to rows i and i + 1.

For the upper bound, we first produce a mapping j that
satisfies the requirement that the cutwidth of j is nearly the
same as the pair-cutwidth of the input. Then, we apply one
of the algorithms for laying out a permutation in optimal
area. For the first step, Lemma 3 establishes the bounds
needed. I

Lemma 3 For any input to the pairing network, there is on
O(N) algorithm tofind o sotisfyingpermutotion f such that
C(j) 5 P(G) + 1.

Proof: We construct f iteratively. Here, we simply out-
line the algorithm. Consider the pair (lui, Id;) where (with-
out loss of generality) lu, = 1. We assign f(l) = 1 and
f(ld;) = 2. Now we have two cases. If Id; is even, we con-
sider the pair (lu,, ldj) where (without loss of generality)
1Uj = Idi - 1; we assign f(fu,) = Id; - 1 and f(ld,) = Id;
and continue iteratively with Id,. On the other hand, if Id;
is odd, we consider the pair (lu,, Id,) where (without loss
of generality) lu, = Id. + 1: we assign j(luj) = Idi and
j(ld,) = Id; + 1 and continue iteratively with Id,. We can
set up an appropriate directed graph, with in- and outdo-
grees being one, on which this process corresponds to a walk;
since such a graph has a cycle decomposition, this iterative

process goes smoothly and terminates at row 2. If the graph
is not Hamiltonian, we find the topmost input row which is
not assigned an output row and iterate. The argument that
C(j) < P(G) + 1 can be outlined as follows - j essentially
realizes a. pairing network in which at most one endpoint of
each input pair is changed by one: the output rows of a pair
(Iu,, Id,) are within (lu, - 1, Id, + 1). The pair-cutwidth of
the graph C’ that is obtained from this pairing is at most
P(G)+l. I

3.3 Pair-Permute Network

For the grid as before, with I, and Oi in row i, a set of M
disjoint input pairs (iu,, Id;), for lu;, Idi E {II,. ,IzM) is
given, with the M associated disjoint output pairs (war rd,),
where r’u;, rdi E (01,. ,OZM}. Our goal is to determine
the layout of a network in which each input pair is connected
to a comparator (or switch), the outputs of which are con-
nected to the output pair. The entire network is called the
pair-permute network. We set N = 2M.

Consider the graph G on a linear array of N vertices
in which, for each input-output 4-tuple (la;, Id;, TU;, rd,) =
(Z;, I,, Ok, Ol), we put edges between vertices ma{i,j} and
min{k,l) and between vertices min{i,j) and max{k,l); thus
there are N edges in all. The pair-permute-cutwidth of the
input instance, PP(G), is the maximum number of crossing
edges of G between any pair of rows i and i + 1.

Theorem 4 Any layout of o pair-permute network requires
at least PP(G) columns, independenl of the number of rows
used. There is an algorithm to compute o layout ojanypair-
permute network using ot most PP(G) columns and N + 1
rows; this algorithm takes time O(N PP(G)).

We sketch the proof here. Consider any input-output b
tuple (I,, I,,O,,Ot). We define a mapping f as follows:
f(I,..{i,>)) = O,i.(w) and j(I.ni.{i,,,) = O,.x{k,q. For
this f, we apply any of the algorithms for laying out a per-
mutation in optimd area. This produces a layout in which
the two routes from the input pair to the output pair cross,
and we can put the intermediate comparator (or switch)
at that intersection. This completes the construction. We
claim that C(j), the cutwidth off, is at most PP(G); this
requires a proof that is not very difficult, and it is omitted
here.

4 Layouts of Classes of Permutations

In the constructions in Section 5, we use two special
classes of permutation, called bit reversal and ““shuffle per-
mutations. In this section, we define these classes and de-
scribe their properties.

Definition 4.1 Let N = 2” and k < n. The k-bit rever-
sal permutation (ov k-bit revemer) % the permutation on
{0, , N- l] that connects each element 2: with the element
x’ obtained by reversing the order of the k least significant
bits of the binary represent&ion of z. E.g., the %bit reuersal
of 1011 is 1110.

Definition 4.2 Let N = 2” and k < N, and o~~ume for
simplicity that N/k is an integer.

(a) The k-way unshuffle permutation is the permutation
that connects each z with z’ = (z mod k) $ + [fj.

(b) The k-way shuffle permutation is the permutation that
connects each z with z’ = (z mod $) k + I$$.

458

Note that a k-way shuffle permutation is equivalent to an f-
way unshuffle permutation. If k = 2’, then a &way shuffle
(unshuffle) permutation corresponds to a rotation of the bit
representation of each position by T positions to the right
(left).

Definition 4.3 A bit-permutation is (I permutation on (1
set of elements induced by a permutation on the bits of their
binary addresses.

For example, a bit-reversal or any 2’.way shuffle or unshufile
is a bit permutation.

We now consider the area and shape of layouts of some
of these permutations. Given a partitioning of N elements
into N/b disjoint blocks with b elements each, we say that
a permutation is an all-to-d permutation with block size b,
b > fl, if exactly b’/N elements in block i are connected
to elements in black j, for all i, j. It is easily seen that the
n-bit reverser on N = 2” elements, as well as any k-way
shuffle and unshuffle with k = w(l) and k = o(N), is an
all-to-all permutation for some block size o(N). Also, for a.
given block size, any a&to-all permutation can be reduced to
any other all-to-all permutation by performing appropriate
local permutations inside the blocks, resulting in at most a
lower order additive difference in layout area.

It is easily shown that there exists an all-to-all permu-
tation in for which C(s) defined in Section 3.1 has a Ham&
tonian path, and hence Theorem 1 can be applied. By per-
forming an additional analysis of the shape of the resulting
layout, we can show the following lemma.

N/2 N/2 N/4
--t(

N

(3 (3 (b) (b) Cc) Cc)

Figure 1: Lay& shapes of (a) a left-oriented and (b) right- Figure 1: Lay& shapes of (a) a left-oriented and (b) right-
oriented k-way unshuf%e or n-bit reverser, and (c) of a (right- oriented k-way unshuf%e or n-bit reverser, and (c) of a (right-
oriented) (n - 1).bit revener. oriented) (n - 1).bit revener.

Lemma 5 The n-bit reverser and any k-way ““shuffle OP
shu@e with k = u(l) and k = o(N) can be laid out in
N/2 + o(N) columns, with only D constant number of bends
on any path. The layout has (I parabolic shape such that row
i of the layout occupies only 2i(N - i)/N + o(N) columna.

We can we bath left-oriented and right-oriented parabolas,
as shown in parts (a) and (b) of Figure 1, respectively. Note
that a k-bit reverser with k < n is equivalent to applying a
k-bit reverser separately to each of the 2”-’ disjoint blocks
of 2k elements. Thus, for k = n - 1 one possible layout has
depth N/4 and a shape as shown in Figure l(c).

5 Specific Networks

5.1 ButtertIer

We present a triangular layout for the butterfly switching
network with N = 2M = 2”‘+’ inputs.

Figure 2: Preliminary outline and triangular layout of B ai.

The top level 8; of a butterfly network 8” transfers
half of the 2”’ inputs in the top half to the bottom half,
and vice versa, thus requiring width at least M at the mid-
paint. A more detailed analysis shows that, for 1 < j 5 M,
the width required is at least j for the rows at distance j
from the top or the bottom. The construction illustrated
in Figwe 2 achieves this optimal width together with the
optimal height, both to within an additive constant. On the
left in Figure 2, we show a simple preliminary layout. The
final layout is obtained by folding in the lefthand corners
along the dotted lines. For the smaller levels, 8; where
e < m-O(l), we need to UE rectangular layouts which can
be packed tightly in a vertical stack without requiring too
many extra Iows.

2t.f+0

Figure 3: Sketch of layout of a butte&y network using triangles.

The triangular layout yields a considerable advantage in
laying out a complete butterfly network. We can lay out a
t3Kwt in the same way, as a pair of half-size triangles one
above the other. If the layout is done with the triangles
pointing the opposite way from that of the 0: then the

459

two layouts can be fitted together snugly within about M
columns. Similarly, the B,“-, and the BE-a fit together
in about M/4 columns. The total width required for the
complete butterfly network is therefore only M(1 + l/4 +

.) z 4M/3 = 2NJ3. See Figure 3.

Theorem 6 The optimal area for a layout of the butterfly
switching network with N inputs is 2N2/3 + o(N’).

Proof: A construction for the upper bound was de-
scribed above. For a matching lower bound on the layout
area, we make use of one property of the butterfly compsra-
tar network which is used when it occurs as a component of
a bitonic sorter. It can perform a merge of a pair of sorted
sequences, when they are presented at the inputs in inter-
leaved fashion, with their sorted orders running in opposite
directions. As a consequence, for any i, the input sequence
1(N-2J)(10)j (an interleaving of IN’* and 1N’2-10J) can be
transformed into the output sequence O’l(“-‘I.

Consider any layout of a butterfly comparator (or switch-
ing) network. We can find a row r such that i inputs and
j outputs appear above T, and N - 1 5 i + 2j < N + I.
From the above merging property, we can see that at least
i + j edge-disjoint paths cross from row T - 1 to row r, i
from above carrying l’s and j from below carrying 0’s. If
i > j then i + j > 2i/3 + 4i/3 > 2(N - 1)/3, giving a lower
bound of [2N/3J columns. Similarly we could look for a
row 7’ with i’ inputs and j’ outputs occurring below r’ and
i'+ 2j’ z N. If i’ > j’ then the L2N/3] lower bound follows
as before.

Let us suppose therefore (without loss of generality) that
j - i < j’ - i’, and that j - i = a 2 0. It is easy to see that
there are at least 2a rows between r and T’ not containing
outputs, and so the height of the layout is at least N + 20.
The area A satisfies

A 2 (N+Za)(i+j) 2 (N+2a)(ZN-2-a)/3 2 2N2/3+o(NZ)

provided that a < 3NJ2. Values of 01 above 3N/2 cannot give
any lower area &ce we have bn independent lower bound
on the width of N/2 from Theorem 7. I

5.2 Permuted Butterflies and Dual Benes Networks

Sometimes we can tolerate a permutation of the input
nodes or the output nodes of a layout to save space. In a
standard layout of a butterfly interconnection network, the
total area is dominated by the first few levels Bz, B,“-, , .,
and the contribution of the second half of the sequence of
m levels is negligible. Consider the effect of permuting the
order of the M input nodes using the m-bit reversal permu-
tation. Now, the initial levels can be laid out as B;“, By,. ,,
and the contribution of the first half is negligible. At the
middle of the layout we restore the original order of the
nodes, so that now the second half of the layout retains its
negligible area. The required permutation of the 2M lines
is the reversal of the leading m bits, which can be laid out
like the m-bit reverser but with pairs of adjacent lines being
routed in parallel. We find then that the total area of this
layout is dominated by the bit permutation in the middle,
Only M + o(M) columns are required, with a rectangular
area of about 2MZ = N2/2. We will later take advantage of
the parabolic shape of the layout.

The dual Benes network consists of a left-to-right-reversed
butterfly network followed by a normal butterfly. So the cor-
responding juxtaposition of two input-permuted butterflies
also gives the same network, since the two permutations

meeting in the center cancel each other. Hence the doal
Benes network can be laid out in an area of about NZ.

Theorem 7 (i) The optimal oren for a layout of the dual
Benes network with N inputs is N2 + o(N’) and at least
N - 1 columns we required in any layout.
(ii) The optimal area for o layout of LI permuted butterfly
switching network with N inputs is N’/2 + o(N’) and at
least N/2 columns are required in any layout.

Proof: The constructions are described above. The
lower bounds for the Benes network follow from the rear-
rangeability property of this network. For any layout we
can find a row T such that i inputs and j outputs lie above
T, and N - 1 5 i + j 5 N. Since the Benes network can
permute the input sequence l’ON-’ to the output sequence
ON-‘l’, the lower bound of N - 1 columns is immediate.

The lower bounds for the permuted butterfly switching
network follow from our construction of the Benes network
using a pair of adjacent butterfly networks. I

121 3 21 4 3 21 5 4 321
Binary levels

Figure 4: A bitooic sorting network for 32 inputs.

5.3 Bitonic Sorting Networks

A conventional comparator network for bitonic sort with
N = 2” inputs can be represented, as for example in [17],
with 2” horizontal lines representing the inputs, and com-
parators shown as arrows linking the pairs of inputs which
are to be compared at each time step (see Figure 4). The
network consists of n successive merging phases. In the ith
phase, for 1 5 i < n, pairs of sorted sequences of length 2’-’
are merged. In each pair the two sequences are presented in
oppositely sorted order.

A naive layout of this network would involve bringing
into adjacent lines the pairs of inputs to be compared and
then returning them in the appropriate order to their origi-
nal pair of positions. One obvious improvement would be to
bring the required inputs together but not to return them
afterwards, merely remembering their logical positions. We

460

adopt an alternative strategy here. Any comparator layer
corresponding to lower-order bit positions requires only few
columns. We introduce bit permuters at suitable places in
the layout so that every comparator layer now corresponds
to a low-order bit. The layout area is now dominated by the
layout of the bit permuters.

As illustrated in Figure 4, the sequence of bit positions
(the bits running lrom 1 (low) to n (high)) corresponding to
the sequence of comparator layers is:

1;2,1;3,2,1;...;n-I ,..., 3,&l;% ,..., 2,l.

The ‘L;))s mark successive merging stages. Corresponding to
bit i + 1, we use a B!“-‘) to bring together inputs with ad-
dresses that differ in the (i+l)st bit. In terms of bit permu-
tations, the (i+l)st bit and the first bit areexchanged. Then

a line of comparators is used, followed by another 5!n-‘) to
restore the previous order.

We choose k such that J;; > k > 210g n + w(l), so that
n22”-’ = o(N) and !? < n. By using bit permuters we will

ensure that we only require 8:“-‘l’s for ! _< II - k and the
choice of I; ensures that the total width of a.ll these butterfly
levels is o(N). We will need two n-bit reversers, one (n-e)-
bit reverser for each of e = 1,2,3,. k, and in addition O(n)
smaller bit reversers. The results of Section 4 show that the
t,otal width of all of these is only N(l/2+1/2+ l/4+ l/8 +

.) + o(N) = 3N/2 + o(N).
In the following outline of the construction we will refer

to component parts with O(N/2*) columns as small and
other components as large. Described from right to left,
our layout first uses n - k small butterfly levels, but then
a bit permutation is used to interchange the k bits (n -
k + 1,. , n) about to be encountered with the k bits most
recently dealt with, i.e., n - 2k + 1,. , n - k. This bit
permutation is easily achieved using a constant number of
small bit reversers and one n-bit reverser. Now, the only
large butterfly levels are those operating on (what were) bits
n - 2k + 1,. , n -k, and so the next n - k levels are small.
When a large level is about to be encount,ered again, another
bit permutation is used to move the most recently processed
bits into the top k positions. This involves a second n-bit
reverser.

This seems to be becoming expensive, but now a small
adjustment allows us to meet the claimed bound. In the
second bit permutation from the right, we move bit n back
into the most significant position, as well as moving the k- 1
most recently encountered bits into the other k - 1 most
significant positions. The poinl of t,his is that, bit n is used
in a butterfly level just once, at the beginning of the linal
merge phase. Therefore at this point, running backwards
through the network, there is no further use of this bit. It
can remain always now in the most significant position, and
the width of an (n - I)-bit reverser is only about IV/~. In
a similar way at the third-last bit permutation, bit n - 1
can be lodged permanently in the second-most-significant
position. reducing the width of the next large bit reverser to
only N/8, and so on.

One further detail needs attention. The rightmost bit
permutation comes jnst to the left of bit n - k in the final
merge phase, the next bit permutation comes to the left of
bit n-2k in the previous merge phase, the next is to the left
of bit n - 3k + 1, and so on. Since k’ < n, there is space for
at least k phases in this pattern before a change is needed.
Beyond this point (to the left of the final k merge phases)
all butterfly levels will be small, since the k m& significant

bits are in their natural positions and are not used by the
comparators.

A Further Improvement. The ISN’ bound of the previ-
ous subsection was obtained by simply adding up the num-
ber of columns needed for each of the bit reversers. We
now show how the layout area can be further improved to
about 1.39NZ by “packing” the components in a more space-
efficient way. To do this, we need to exploit the parabolic
shape of the bit reverser layouts shown in Figure 1.

__ T ..~) c. _

116N 213 N 112N

Eg;:e 5: A layout of the bitonic sorting network with area
ix

To get the improved bound, we lay out the last of the two
n-bit reversers in the straightforward way, We then group
the other n-bit reverser with the (n - 1).bit revemer, and
the (n - 2).bit reverser with the (n -3)-bit reverser, and so
on, and lay out each of the groups in a more area-efficient
way by using the left-oriented and right-oriented layouts of
the bit reverser, as introduced in Section 4.

Recall that an n-bit reverser can be laid out such that the
ith row of the layout uses 2i(N -Q/N columns. By simple
calculus, we can show that we can lay out a right-oriented
(n - I)-bit reverser fallowed by a left-oriented n-bit reverser
in a total of ,+” columns (instead of the trivial :N). For the
group contalmng the (n - 3).bit reverser and the (n - 2).bit
reverser, we get a layout with &N columns, and continuing
this we get a total of

”
;N+C LN=~N

,=. 3 4’

columns for the entire network. The resulting overall strut-
ture is shown in Figure 5, and we get the following result.

Theorem 8 The bit&c sorting network can be laid out in
area EN2 + o(N2).

5.4 A Sorting Network with Optimal Layout Area

In this section, we describe a layout of a sorting network
based on the Columnsort algorithm [IS] with area N* +
o(N’). We first sketch the Columnsort algorithm, and then
describe the layout of the corresponding sorting network.

5.4.1 Columnsort in a Nutshell

Columnsort is a simple parallel sorting algorithm pro-
posed by Leighton [18]. The basic idea is to reduce the
problem of sorting N elements to that of (repeatedly) sort-
ing subsets of Nz13 elements.

461

In the following, we assume that the input is given as
au array A[O. N - l] of size N, on which the algorithm
operates by means of comparisons and permutations. For
simplicity we assume that N = B’ for some integer B. We
think of A as being partitioned into B blocks of size B’,
where block i consists of A[i. B’] to A[(i + 1) B2 - I], and
we refer to A[i 8’ + j] as element j of block i. Then the
algorithm runs in the following six steps:

(1) In each block, sort the 5’ elements into ascending or-
der.

(2) Perform a B-way unshut& permutation on A, moving
element Bj + k of block i to element iB + j of block
k,foralli,j,kE[O...B-11.

(3) In each block, again sort the 8’ elements into ascend-
ing order.

(4) Perform a B-way shuffle permutation on A, moving
element iB + j of block k back to element Bj + k of
block i.

(5) In each block, again sort the Bz elements into ascend-
ing order.

(6) Perform two merging steps, first between blocks 2i and
Zi+l, for 0 < i < B/2, and then between blocks Zi- 1
and 2i, for 0 < i 5 B/Z.

For a proof of correctness, ve refer the reader to [la]. For
some basic intuition, observe that Step (2) distributes the el-
ements of each sorted block in a round-robin fashion among
all B blocks. As a result, each block receives an ‘approx-
imately evenly” spaced subset of all input elements. This
means that after Step (3), the relative position of each ele-
ment inside a block cau be used to estimate an approximate
destination block, to which it is routed in Step (4). At this
point, it can be shown that every element is at most one
block away from its final destination, and hence Steps (5)
and (6) suffice to finish the sort.

5.4.2 An Eficient Layout

Our layout of Columnsort implements the six steps of
the algorithm from left to right. Each element of the array
A corresponds to a row of the layout.

Note that a variety of algorithms can be used to imple-
ment the sorting in Steps (I), (3), and (5), for example AKS,
bitonic sort, or the present algorithm used recursively. In
all of these cases, the number of columns needed for the lay-
out of these steps is at most O(N2’“p&ylog(N)) even under
very naive layouts. The same is also true for the merging
networks needed for Step (6).

Thus, the layout area of the network is determined by the
layout area of the permutations that are routed in Steps (2)
and (4). Since these unshut& and shuffle permutations can
be implemented in N/2+0(N) columns, we get the following
result if we use AKS in Steps (I), (3), and (5).

Theorem 9 There exists on O(log N) depth sorting net-
work with layout orea N2 + o(N’).

We point out that this matches the N2 lower bound for
the area of any sorting network shown by Even [7] to within
au additive lower order term. We note that the area in-
side the bounding rectangle that is actually occupied by our
layout is even smaller than that, $N’ + o(N’), and that it

has the shape of a symmetric parabolic lens, formed pre-
dominantly by the juxtaposition of two opposite parabolic
layouts of bit reversers.

It can also be shown that this Columnsort layout achieves
an area of $N*+o(N’) under the more relaxed definition of
layout area considered in [7], where the bounding rectangle
containing the circuit does not have to be aligned with the
coordinate axes. For this definition of layout area, Even
[7] has proved a lower bound of !N’, and hence our result
establishes a separation between t a ese two definitions of area
complexity. See Figure 6 for au illustration of this layout.

Figure 6: Layout of Columnsort using two all-to-all permuta-
tions. Shown ia the standard layout area of NZ a~4 well a the
layout area of gNZ if the bounding box does not have to be
parallel to the axes.

Due to space constraints, we have to leave a detailed
discussion of our results to the full paper. Here, we only
mention briefly several extensions and open problems.

l Our results on butterflies can be used to obtain tight
bounds for the layout of merging networks. If the two
sorted lists are input into the circuit in an interleaved
fashion, then about NJ2 columns suffice; this is also
the best possible under any ordering of inputs and out-
puts. If the two lists are supplied separately, then
about N columns are needed.

l Au interesting open problem is whether we can get
tight bounds for the bitonic sorter, and for general
sorting under the relaxed definition of VLSI layout
area assumed in 171. In the latter case, the problem
boils down to closing the gap between our back-to-
back parabolic upper bound and the diamond-shaped
lower bound given by the agument in [7].

. If the comparators are larger than unit size, say, occu-
pying a (kxk) area, then wecan replace each “layer” of
O(N) comparators by O(N/r) successive layers with T
comparators in each. These layers follow the appropri-
ate shape (rectangular, triangular or parabolic) of the
original layer, and if rk = o(N) then the additional
number of extra rows required is negligible. If there
were L original layers then the total number of extra
columns required will be O(LkN/r). Because the net-
works we consider in this paper have L = O(log’ N),
if we choose r = fllog N then the total additional
area is o(N’) for any k = o(fiJlog N).

462

l Finally, one could try to show upper bounds for prc-
tical instances of the problems, e.g., a bitonic sorting
network with 1024 input nodes, for which a trivial lay-
out would zive au area. of 2522K. Here one may at-
tempt to gz the best combination of the layouts &om
Sections 3.1, 3.2 and 3.3.

[16] J. Kneuer. Personal communication. 1998.

[17] D. Knuth. The Art of Computer Programming 3: Sort-
ing and Searching. Addison-Wesley, Reading, MA, 1973.

[la] T. Leighton. Tight bounds on the complexity of parallel
sorting. IEEE Transactions on Computers, 34:344-354,
1985.

References

[I] A. Avior, T. Calamoneri, S. Even, A. Litman, and
A. Rosenberg. A tight layout of the butterfly network. In
Proc. of the 8th ACM Symposium on Pomllel Algorithms
and Architectures (SPAA ‘96), pages 170-182, 1996.

[19] T. Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays - Trees - Hypercubes. Morgan
Kaufmaun, San Mateo, 1992.

[ZO] T. Lengauer. Combinatorial Algorithms for Zntegmted
Circuit Layout. B.G. Teubner, Stuttgart, 1990.

[z] M. Ajtti, .I. Komlds, and E. Szemer&di. An O(nlog n)
sorting network. Proc. of the 15th ACM Symposium on
Theory of Computing, pages 1-9, Boston, Massachusetts,
1983.

[Zl] K. Mehlhorn, F. Preparata, and M. Sarrafzadeh. Chan-
nel routing in knock-knee mode: Simplified algorithms
and proofs. Algorithmica, 1(2):213-221, 1986.

[3] K. B&her. Sorting networks and their applications.
Proc. of the AFIPS Spring Joint Computer Conference,
pages 307-314, 1968.

[4] E. Biersack, C. Cotton, D. Feldmeier, A. McAuley, and
W. Sincoskie. Gigabit networking research at Bellcore.
IEEE Network, 6(2):30-40, 1992.

[5] A. C. Dusseau, D. E. C&r, K. E. Schauser, and
R. P. Martin. Fast parallel sorting under LogP: Experi-
ence with the CM-5. IEEE Tronsoctiona on Pamllel and
Distributed Systems, 7(8):791-805, 1996.

[6] K. Eng and M. Karol. Gigabit-per-second ATM packet
switching with the growable switch architecture. Proc.
of IEEE Globecorn 91, 3:1075-1081, 1991.

[i’] S. Even. Layout ofsorting networks. Bell Lobs Technical
Note, 1997.

[8] S. Even. Layout of the sorting net in grid-area 3n’. Bell
Lobs Technical Note, 1997.

[22] H. Okamura and P. Seymour. Multicommodity flows in
planar graphs. .I. Combin. Theory, 31:75-81, 1981.

[23] R. Palmer. An experimental ATM switch for BISDN
studies. Internolionol Journal of Digital ond Analog
Communication Systems, 3(4):341-349, 1990.

[24] C. H. Papadimitriou and M. Yannakakis. Towards an
architecture-independent analysis of parallel algorithms.
SIAM Journal on Computing, 19(2):322-328, 1990.

[25] R. Y. Pinter. On routing two-point nets across a chau-
nel. Proc. of the 19th Design Automation Conference,
pages 894-902, 1982.

[26] N. Pippenger. Telephone switching networks. AMS
Proc. Symposia in Applied Mathematics, 26:101-133,
1982.

[27] C. D. Thompson. Area-time complexity for VLSI. Proc.
of the 11th ACM Symposium on Theory of Computing,
pages 81-88, 1979.

[9] S. Even, S. Muthukrishnan, M. Paterson and S. Sahi-
“alp. Grid layout of the bitonic sorter. Proe. of the 10th
ACM Symposium on Pamllel Algorithms and Architec-
tures (SPAA ‘98), pages 172-181, 1998.

[lo] A. Frank. Disjoint paths in a rectilinear grid. Combi-
notorica, 2:361-371, 1982.

[ll] A. Frank. Packing paths, circuits, and cuts a survey.
In B. Korte, L. Louosz, and A. Schrijuer. Paths, Flows
and VLSI Layout, Springer Verlag, 1991, 47-100.

[12] I. S. Gopal and D. Coppersmith and C. K. Wong. Og
timal wiring of movable terminals. IEEE Transacfions
on Computers, C-32:845-858, 1983.

[13] A. Huang and S. Knauer. STARLITE: A wideband
digital switch. Proc. of IEEE Globecom 84, pages 121-
125, 1984.

[28] C. D. Thompson. A complexity theory for VLSI. Tech-
nical Report CMU-CS-80-132, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, 1980.

1291 D. S. Wise. Compact layouts of banyan/FFT networks.
VLSI Systems and Computations, pages 186-19.5, 1981.

[30] E. Witte. A quantitative comparison ,of architectures
for ATM switching systems. Technical Report WUCS-
91.47, Washington University, St. Louis, MO, 1991.

[31] I. Widjaja and A. Leon-Garcia. Starburst: A flexible
output-buffered ATM switch with N log’ N complexity.
Proc. of the 14th International Switching Symposium,
Vol. 2, pages 226-230, 1992.

[32] D. Wagner and K. Weihe. A linear time algorithm
for edge-disjoint paths in planar graphs. Combinator-
ice, 15:135-150, 1995.

[14] W. Kautz, K. Levitt, and A. Waksmau. Cellular inter-
connection arrays. IEEE Transactions on Computers,
C-17:443-4.51, 1968.

[15] M. Kaufmann and K. Mehlhorn. Routing problems in
grid graphs. In B. Korte, L. Louasz, and A. Schrijuer.
Paths. Flows and VLSI Layout, Springer Verlag, 1991,
165-184.

463

