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Abstract 

The grid-area required by a sorting net for in- 
put vectors of length N is shown to be at least 
(N - 1)“/2. Of 11 a sorting nets which use o(N2) 
comparators, the bitonic sorting net of Batcher 
has been known to have a layout of O(N”), but 
the hidden constant factor has not been inves- 
tigated. A straightforward use of known tech- 
niques leads to a layout of grid-area 20.25N2. 

We present area-efficient layouts of the bitonic 
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sorter. First, we describe a flip-bitonic sort- 
ing net - it is isomorphic to Batcher’s bitonic 
sorter but leads naturally to a layout of grid-area 
less than 4N2. Second, we present a butterfly- 
based layout of the bitonic sorter with grid-area 
of 3N” t O(N). The former does not use knock- 
knees while the latter relies on them and is more 
compact. 

1 Introduction 

A sorting net has N input terminals and N out- 
put terminals. If N (real) numbers are fed into 
the input terminals, the same numbers appear 
sorted on the output terminals. 

The nets discussed in this paper are con- 
structed of comparison boxes, called comparu- 
toys, and fixed wires. Each of the comparators 
has two input terminals and two output termi- 
nals. If two numbers are fed to the two inputs, 
the same numbers emerge on the outputs; in our 
drawings, the sma.ller of these emerges upwards 
and the greater downwards. See Figure 1. 

All wires are directed links which connect a 
net input terminal or a comparator output to a 
net output terminal or a comparator input. If 
we view the net as a directed graph, where the 
comparators and net terminals play the role of 
the vertices, and the wires play the role of the 
directed edges, then the resulting directed graph 
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is assumed to be a,cyclic. 
Sorting nets have been studied since the fifties 

[l]. They are useful as fast circuits to perform 
sorting of data, as well as for message routers, 
by sorting the addresses which the messages are 
aimed for. 

In trying to pack sorting nets into a small area 
or space, it is natural to investigate how much 
grid area is necessary for embedding the the cor- 
responding directed graph. In this study the fol- 
lowing rules for a graph layout on the grid a,re 
used: 

l Vertices of the graph are mapped to grid- 
points, at most one vertex per grid-point. 

l Edges of the graph are to be routed along 
grid paths by an edge disjoint mapping. 
Namely, an edge of the grid may not belong 
to more than one routing path. Note that 
at most two paths can meet a.t a grid-point. 
In particular, the meeting may be straight 

or &~ock-knee: in the former, neither path 
changes direction at the intersection point 
and in the latter, both the paths change di- 
rections simultaneously. 

l If a vertex is mapped to a grid-point, then 
all paths representing edges incident on this 
vertex must begin or end at that grid-point, 
and no other path is allowed to pass through 
that point. 

The yri$-clrea of a layout is defined to be A if 
there is an a x b rectangle R which encompasses 
the layout, namely, all grid-points of the la,yout 
are either inside R or on its boundary, and A = 
(a+ l).(b+ 1) is th, 1 e east real number for which 
this holds. It is not required that the sides of 
R be parallel to the grid lines or that u or b be 
integers. For more information on the reasons 
for this definition, see the appendix of [a]. 

We present the following results in this paper. 
We present a lower bound of 0.5(N - 1)2 on the 
grid-area needed for any sorting net (Section 2). 
Of all sorting nets which use o(N2) compara- 
tors, the bitonic sorting net of Batcher has been 
known to have a layout of 0( N2), but a straight- 
forward use of known techniques leads to a lay- 
out of grid-area 20.25N ‘. Our main results are 
two improved area-efficient layouts of the bitonic 
sorter. We describe a flip-bitonic sorting net - 
it is isomorphic to Batcher’s bitonic sorter but 
leads naturally to a layout of grid-area less than 
4N2 (Section 3). We then present a butterfly- 
based layout of the bitonic sorter with grid-area 
of 3N2 t O(N) (Section 4). The former does not 
use knock-knees while the latter relies on them 
and is more compact. 

2 Lower and Upper bounds on 
the Area of Sorting Nets 

Consider a net with N input terminals and N 
output terminals, of a structure similar to a sort- 
ing net, except that instead of comparators one 
has switching boxes. The difference is that a 
switching box has to be set externally, and does 
not decide on its own whether the numbers on 
its inputs should stay in the same order on its 
outputs, or be swapped. Such a net is called 
rearrangeable (see, for example [3]) if every per- 
mutation on the vector of N input numbers, fed 
to the input terminals, can be realized by some 
setting of the switching boxes. 

The following theorem and its proof proceed 
along lines initiated by Thompson [4]. 

Theorem 2.1 The grid-area of a reurrungeable 
net for N inputs is greater than $(N - 1)2. 

The proof is omitted from this abstract. 
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Since every sorting net is rearrangeable, the 
lower bound on the grid-area, as in Theorem 2.1, 
applies to sorting nets as well. 

There is a sorting net of grid-area (N + 1)2. 
One such net was presented in [5]. Yet, this net 
may not be suita,ble, since it has s2( N”) compara- 
tors? and the depth of the net, i.e., the masimum 
length of a directed pa.th, in terms of compara- 
tors, from input to output, is 2N-3. The bitonic 
sorter of Batcher [8] has O(N log2 N) compara- 
tors. We will discuss its layout area. Asymp- 
totically, nets with fewer compara.tors are known 
[(i] [7], but they hide an enormous constant, and 
use expanders, which make their layouts in small 
grid-area very unlikely to exist. 

3 A Flip-Bitonic Sorter With- 
out Knock-knees 

In this section a new method to lay out the 
bitonic sorter is described. The recursive con- 
struction of this sorter is described from scratch, 
including the proposed layout. The grid-area is 
shown to be less than 4N2. Lines in the layout 
are slanted a.t 45’ with respect to the input and 
output columns. It is somewhat reminiscent of 
Wise’s layout of the butterfly net. See [9]. 

Let us start with a few definitions and obser- 
vations. 

The tero-orle princi;nle says that if a network 
sorts all 2N binary input vectors, then it sorts 
any N-vector of real numbers. This theorem 
is attributed by Knuth [l] to W.G. Bouricius. 
See [I] for a proof. For this reason, only sorting 
of zeros and ones is discussed. 

A word of zeros and ones is called bZtoGc if it 
is of the form OalbOcld, and either a or d is zero. 
(Clearly, CL + b + c + cl = N.) * 

‘Batcher called a real vector bitonic if it is first nonde- 

Let w E {O,l}*, i.e., w is a binary word, De- 
note by wT the reversed word, i.e., the word re- 
sulting from a left-right flip of w. 

Lemma 3.1 If the binary word wlwz is bitonic, 
so Is 711;,w;. 

The proof is omitted from this abstract. 
Assume xi = 21x2. “XN, while y2 = 

xN+lxN+2 ’ * ‘XZN. If ~1x2 is bitonic, ~1x5 is 
called Jlip-bitonic. 

However, if ~1x2 is bitonic, by Lemma 3.1, so 
is ,y;x$. Thus, x:x2 is also flip-bitonic. 

Our purpose is to construct a sorter of flip- 
bitonic input vectors. Such a net, for N = 2” 
inputs, is denoted by FM,. Its construction 
is recursive, and FM1 consists of a single com- 
parator. The construction of FM,+1 consists of 
two copies of FM,, one above the other, with 
an additional layer of comparators and wiring in 
front of it. This is done as follows. 

Consider now the array net shown in Figure 2. 
It consists of a column of input terminals fed 
with an input Vector 2122 . . . X2N, an array of N 
comparators and a column of output terminals 
producing the output vector yiy2 . . . y2~. 

Lemma 3.2 If the input vector 21x2. . .X2N of 
the army net is binary and flip-bitonic, then its 
output vector yly2 . . . y2N satisfies one of the fob 

lowing two conditions: 

1. The vector y1 y2 * * . yN is all zeros and 

YN+lYN+2 ’ ’ .y2N is bitonic. 

2. The vector yJN+ryN+2 . . .yzjv is all ones and 
YlY2 * * . yN is bitonic. 

creasing a.nd t)hen nonincreasing, or if there is a circular 
rotation of its elements which brings it to this form. By 
using the zero-one principle we can restrict our discussion 
to the definition given here. 

174 



The proof is omitted from this abstract. 
Next, we add to the array net flip- 

wiring, which converts ea.& of yry2 . . * ye a.nd 
YN+l YN+2 * ’ ’ y2N from bitonic to flip-bitonic. 
See Figure 3. The purpose of the additional flip- 
wiring is to enable the connection of two half-size 
sorters of flip-bitonic vectors. This completes the 
description of .FM,+l and the proof, by induc- 
tion on n, that it sorts. See Figure 4(b) and (c) 
for 3M2 aad 3M3, respectively. 

The construction of the complete Flip-Bitonic 
Sorter, 3,,. is clone recursively. 31 is just a com- 
parator, drawn with diagonal lines, just as 3Ml. 
To build 3n+r, use two copies of 3n, an upper 
and a lower, and attach the 2n+1 outputs to the 
inputs of 3M,+r. See F’igure 5. 

It is easy to see that the layout of & is en- 
closed by a rectangle of height fi. (N - 1) and 
length fi. (2N - (2 + log N)). Thus, the grid- 
area is bounded by 4N2. 

4 Bitonic Sorter Using Knock- 
knees 

In this section we present a tighter area layout 
for the bitonic sorter. There are two main dif- 
ferences between this construction and the one 
presented in Section 3, namely, the construc- 
tion here has lines aligned with the input/output 
columns, and it uses knock-knees. We start our 
description with a few definitions. 

A butterfly permutntion Et,,, k 6 e, is a bi- 
partite graph with L input and L output nodes, 
where L = 2e. Each input node le,k [i], 0 5 i 5 
L - I, is connected to two output nodes, O~,k[i], 
and Oe,k[?], where 7” denotes the binary number 
obtained by flipping the ICth most significant bit 
of the binary number i. 

The bitonic sorter network relies on bitonic 

merger networks. The bitonic merger network 
.K7, with N = 2” inputs is constructed recur- 
sively. B7r is a single comparator. f37,+r with 
inputs X[O, . . . ,2N - l] consists of the following 
two layers, The first layer comprises N compara- 
tors, Co,, . . , CN-1. The illpUtS of Ci are -x[i] 
and X[N + i] for each i. The second layer com- 
prises an upper and a lower copy of B7,. The 
upper (respectively lower) output of C; is the ith 
input to the upper (lower, respectively) copy of 
,B7,%. The N-vector of outputs from the upper 
copy of f?7,, followed by that of the lower copy 
forms the 2N-vector output of B7,+r. 

The bitonic sorter WIS,, on N = 2n inputs is 
constructed recursively. B7Sr is a single com- 
parator. BIS,+r is constructed by feeding the 
inputs from an upper and a lower copy of BIS,; 
the N outputs of the upper copy are fed to the N 
upper inputs of a B’r,+r in that order, and the 
N outputs of the lower copy of B7S, are fed in 
the reversed order to the lower N inputs of the 
BI,,+1. The entire network B7s, sorts N in- 
puts [8]. (For alternative but equivalent versions 
of the bitonic sorter networks, see [l]). 

Our layout for the bitonic merger is based 
on layouts of the butterfly permutations f?,,r, 
and &,z. The primary challenge in obtaining 
such layouts is to avoid column and row conflicts 
amongst the connections. Consider two distinct 
connections, one starting from grid row r, and 
another ending at grid row r. Clearly, the for- 
mer must turn away from grid row 1’ at, or to the 
left of, the column used by the latter to reach 
grid row r. For any row r, we refer to these two 
columns as the in-column and the out-column, 
respectively. 

Initially, we restrict ourselves to two types of 
connections: (i) straight connections, and (ii) 
jogs. A jog is a horizontal-vertical-horizontal 
path from input node (kr, 0) to output node 
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(k,, x), Lx # kr, with a vertical segment on some 
column c, 0 < c < 2. We use two types of jogs: a 
jog that has source (~1, 0) and destina,tion (Q, CC) 
is a down-jog if 1’1 < T2, and an up-jog if T1 > 1‘2 

(see Figure 7). 

Lemma 4.1 A butterfly permutation XJe,k, for 
b = 1,2, can be laid out on a grid with 2L + 1 
rows and L - 1 columns by using only straight 
connections and jogs. The column assipment 
of a jog pwith input row T is given by the follow- 
ing function f(~): f(~) = L - 2i + 1, for T = 4i; 
f(T) = L - (T/2?) + 1, fOT T = di f 2. 

Proof. We first describe the input-to-output 
connections of I?c,~ on the grid. Its 2L input lines 
are mapped to grid points (O,O), . . . , (2L - 1,O). 
Input node i is connected to the two input lines 
on rows 2i and 2i + 1. The output lines are 
mapped to grid points (1, L + I), . . . , (2L, L •t 1). 
Output node i is connected to the two output 
lines on rows 2i + 1 and 2i + 2. 

The connections from the input lines to the 
output lines are as follows: (2i+l, 0) is connected 
to (2i + 1, L + 1) via a straight connection, and 
(2i, 0) is connected to (T •l- 2, L + 1) (rather than 
to (i, L + 1) for reasons which will be cleaa later), 
via a jog. 

It is clear that the given column-assignment 
function f is one-to-one, hence the assignment 
is free of column conflicts. Therefore we only 
need to show that the layout results in conflict- 
free row assignments as well. To prove this, we 
simply show that for any row T, oV = ir + 1, where 
o, is the out-column, and i, is the in-column of 
7'. (>onsicler T = 4i, 0 5 i 5 L/2 - 1. The in- 
column, i,, is L - 2i+ 1. The input row of the jog 

whose output row is T = 41. is 2(2i - l)k), hence 
the out column, o,., of T is L - 2i. Similarly for 

T = 4i + 2, its in-column iS f(~) and its out- 
column is f(r) + 1. See Figure 8 for the layout 
of a 32 input butterfly permutation f?p,r. I 

In our bitonic sorter layout, we will need 
to merge N/(2L) butterfly permutations of the 
form either .B~,J, or Be,2 on the same set of 
columns. If we simply concatenated these lay- 
outs as described in the above lemma, we would 
need to use N + N/(2L) rows. This is waste- 
ful. In what follows, we describe a procedure to 
merge the N/(2L) butterfly permutations Be,, by 
using only N + 1 rows. We leave the details of 
how to merge the butterfly permutations f?~ to 
the full paper. 

Henceforth we focus on the layout of the but- 
terfly permutation .G’e,r, which, for brevity, we 
will call the butterfly. The following observation 
(from the proof of Lemma 4.1) will prove useful. 

Observation 4.2 For any row T, if the jog that 
has source (T, 0) has column assignment c, then 
the jog that has the destination (T, x) has the col- 
umn assignment c + 1. 

we say that (T, c) : (T, c+ 1) iS an up-slot if the. 

jog with source (T,O) is an up-jog with column 
assignment c, and the jog with destination (T, x) 

is a. down-jog with column assignment c-l- 1. Sim- 
ilarly, we say that (T, c) : (r, c-i- 1) is a down-slot 
if the jog with source (r,O) is a down-jog with 
column assignment c, and the jog with destina- 
tion (T, z) is an up-jog with column assignment 
c -I- 1. See Figure 8 for up and down slots. 

Lemma 4.3 Between columns c and c+ 1, there 
is precisely one of an up-slot or a down-slot. If 
there is an up-slot between columns c and c •t 1, 
then there is a down-slot between columns c + 1 
and c + 2, and vice versa. 

We now show how to modify our layout 
from Lemma 4.1 for melding two butterfly 
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permutations Bc,l with smallest number of rows 
possible. We retain all the straight connections 
aad a.ll the jogs a.s they are cscept the jogs on 
rows 0 a.nd 2L, which aae modified to include 
several turns. The jog in row 2L goes through 
(2~5, l),(‘LL,%(Tz, %(7’2, W2L W=, 4), 
(T4,4),... etc., where (T2,2) : (T2,3), (T,1,4) : 

(1.4,5), -. . are up-slots. The jog in row 0 goes 
through (0, o),(o, 1),(1‘1, ~),(7’1,2),(0, 2),(0, :j), 
(W 3),(7?3, -‘i),(o, 4), . . . etc., where (1'1, 1) : 

(rl, 2), (r:j,3) : (1'3.4), . . . are down-slots. We 
concatenate N/(2L) copies of the butt,erfly of’ L 
input nodes. 

The ith such butterfly, 0 5 i 2 ili/(‘;zL) - 1 
uses input lines from 2iL to 2( i -I- 1)L (there are 
2L + 1 lines for each) using the modified con- 
struction above from Lemma 4.1. In all, the to- 
ta.l number of rows is N + 1. Notice that suc- 
cessive copies of the butterfly from Lemma 4.1 
in the layout above sha.re a, common row, that 
is, the bottommost line in the upper butterfly 
a.nd the t.opmost line of the lower butterfly sha.re 
the same row. This ca.uses no problems since our 
modified construction guarantees tha.t these two 
lines ha.ve no common row portions because of 
the alternating property of up- and down-slots 
from Lemma 4.3. 

Theorem 4.4 There exists a layout of the 
bitonic sorter that uses an area of at m,ost 3N”+ 
O(N). 

Proof. The la,yout of the complete bitonic sorter 
,&KS, uses bit,onic mergers B7,Z,. . . , B7,. The 
merger Blc uses one layer of compara.tors fol- 
lowed by two f37g-1 mergers. In U7,, the wiring 
between the input nodes and the first layer of 
comparators is precisely the butterfly Be. The 
wiring between the first layer of comparators 
of B7p a,nd the two B7[-1 mergers is realized 

as a butterfly permutation .Gf,2, which concate- 
nates a. f?! butterfly to two We-1 butterflies as 
in Lemma 4.1. Hence, altogether, the bitonic 
merger B7e+l uses L+2L - 1 columns for L = 2e. 
This implies tha,t the total number of columns 
B7S,, uses is 3N f O(1) and the total area it 
requires is 3N2 + O(N). I 

The construction in Theorem 4.4 has the 
drawback that the number of knock-knees along 
some connections may be large. In each of the 
layouts of the butterfly permutations, all connec- 
tions with the exception of the topmost and the 
botJtommost ones have either two knock-knees, 
or no knock-knees a.t all. Now we show how to 
modify tha,t construction so that each connection 
has about the sa,me (small bounded) number of 
knock-knees. 

Lemma 4.5 The butterfly permutations f?e,l, 
and We,2 with L = 2e input and output nodes 
(hence, 2L input and output lines) have a layout 
on the grid in which each input-to-output connec- 

tion, involves n constarzt nrtmber of knock-knees; 
the number of rows is 2L + 1 nncl the number 
oj’ columns is L. These layouts are meldable in 
the sense that any k suclz 1ayou.t.s can be concate- 
n,ated on the same set of columns by only using 
2kL + 1 rows. 

Proof. (Sketch) To obtain the layout of the but- 
terfly permutation W~,J, we begin with the layout 
in Lemma 4.1 without the modifications done in 
the melding step, aad borrow notation and def- 
initions from there. So our starting point is as 
shown in Figure 8 for C = 4. We divide the lay- 
out into two halves, top and bottom, Further- 
more we divide each half into two quarters, left 
and right. 

We first describe our construction for the top- 
left quarter, and then show that the construction 
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for each of the quarters can be performed inde- 
pendently, resulting in an implementation of the 
circuit with a constant number of knock-knees 
per connection. 

Our construction relies on iterative applica,- 
tion of a yore-ezclzcl?zge operation, defined a,s fol- 
lows. The up-slots of the top-left quarter of t,he 
layout in Lemma 4.1. from left to right have de- 
creasing row indices. Specifically, they are at 
positions (L - 2,1) : (L - 2,2), (L - G,3) : 
(L - 6,4), . . ., (L - (4i + 2), 2i + 1) : (L - (4i t 
2),2i+2),..., (2, L/2 - 1) : (2, L/2). 

Consider the bottommost (hence leftmost) up- 
slot (L-2,1) : (L-2,2), and the topmost (hence 
rightmost) up-slot (2, L/2- 1) : (2, L/2). We use 
these up-slots to exchange the row of the ceiling 
connection with the row of the down-jog of the 
topmost up-slot. This is done as follows: We 
first move the stra.ight row segment of the ceiling 
connection between (0,l) and (0, L/2) to (2,l) 
and (2, L/2) d an connect the locations (0,1) and 
(2, l), and the locations (0, L/2), and (2, L/2) by 
two column segments. Simultaneously, we move 
the straight row segment of the down-jog of the 
topmost up-slot between (2,2) and (2, L/2--1) to 
(0,2) and (0, L/2 - 1) and connect the locations 
(2, L/2-1)and (0, L/2-ljby acolumn segment. 

Note tl1a.t we cannot connect the loca,tions 
(2,2) and (2,O) by a column segment t,o a,void 
column conflicts. Hence we move the straight 
row segment of the down-jog of the topmost up- 
slot between (2,l) and (2,2) to the row of the 
bottommost up-slot: (.L - 2,1) : (L - 2 : 2), and 
connect the locations (L - 2,1) and (2,l) and 
the locations (L - 2,2) a.nd (2,2) by two column 
segments. Figure 10 demonstrates how a row- 
exchange operation is performed. 

This completes the row-exchange operation 
between the ceiling connection a,nd the row seg- 
ment of the down-jog of the topmost, up-jog. 

Note that as a result of such an exchange both 
the topmost and the bottommost up-slot are 
moved to row 0. 

We iteratively apply the same operation to 
move the new ceiling connection to another POW. 
Ouce a ceiling connection is moved, it is never ex- 
changed again. The knock-knees incurred during 
this operation will be only constant in number 
per connection as they are generated during the 
row-exchange operations which ase performed at 
most twice per connection. 

Note that the row-exchange operations in all 
four quarters are performed independent of each 
other. Moreover, the columns of the up-slots and 
the down-slots are preserved. Hence two or more 
butterflies can be melded as in Lemma 4.3 with 
only a constant number of knock-knees per con- 
nection. 

The layout for butterfly permutation f?~ can 
be constructed in a similar fashion. We leave the 
details of this construction to the full paper. 1 
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Figure 4: The sorting net for flip-bitonic 
vectors 

input 
Figure 6: The recursive construction of the 
merger networks with 2,4, and 8 input and 
lines. 
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Figure 7: The two types of jogs: the down-jog 

Figure 5: The sorting net for input vectors of 
a.nd the up-jog. 

length 16 
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Figure 9: (a) Butterfly with 8 input (output) 
nodes, 16 input (output) lines. (b) The input 
and output line assignments on the grid leading 
to the jog-only implementation. (c) The jog-only 
implementation after the column assignments to 
the jogs, (d) The meldable implementation with 
non-constant knock-knees per connection. 

-slot 

Figure 8: The jog-only irnplelrlelltat,ioll of the (ai Ch) CC) 
butterfly with 16 input (output) nodes. The 
dashed rectangles demonstrate the notions of Figure 10: (a) The top-left quarter of the jog- 
quarters and slots in the layout. only implementation of a 16 input (output) node 

butterfly. (b) The row-exchange operation be- 
tween the ceiling connection (thick line) with the 
straight row connection of the down-jog of the 
topmost up-slot. (c) The complete implementa- 
tion with constant knock-knees per connection. 
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