
Layout of the Batcher Bitonic Sorter
(Extended Abstract)

Shimon Even * S. Muthukrishnan + Michael S. Paterson $ Siileyman Cenk Sahinalp f

Abstract

The grid-area required by a sorting net for in-
put vectors of length N is shown to be at least
(N - 1)“/2. Of 11 a sorting nets which use o(N2)
comparators, the bitonic sorting net of Batcher
has been known to have a layout of O(N”), but
the hidden constant factor has not been inves-
tigated. A straightforward use of known tech-
niques leads to a layout of grid-area 20.25N2.

We present area-efficient layouts of the bitonic

*This work was done at Bell Labs, Lucent Technolo-
gies, while the author was on leave from the Technion.
Computer Science Department, Technion - Israel Inst. of
Tech., Haifa., Israel 32000, evenQcs. technion. ac. il.

+ Bell La.bs, Murray Hill, NJ, USA.
muthuBresearch.bell-labs.com.

rDepa.rtment of Computer Science, University of War-
wick, Coventry, CV4 7AL, UK; msp@dcs. war-wick. ac .uk.
The third and fourth authors were supported in part by
ESPRIT LTR Project no. 20244 - ALCOM-IT.

§Department of Computer Science, University of War-
wick, Coventry, CV4 7AL, UK; and Center for BioIn-
formatics, University of Pennsylvania, Philadelphia, PA,
USA.cenk@dcs.warwick.ac.uk.

Permission to make digital or hard copies of all or part ofthis work for
Personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
othenvi% to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SPAA 98 Puerto Vallarta Mexico
Copyright ACM 1998 O-89791-989-0/98/ 6...$5.00

sorter. First, we describe a flip-bitonic sort-
ing net - it is isomorphic to Batcher’s bitonic
sorter but leads naturally to a layout of grid-area
less than 4N2. Second, we present a butterfly-
based layout of the bitonic sorter with grid-area
of 3N” t O(N). The former does not use knock-
knees while the latter relies on them and is more
compact.

1 Introduction

A sorting net has N input terminals and N out-
put terminals. If N (real) numbers are fed into
the input terminals, the same numbers appear
sorted on the output terminals.

The nets discussed in this paper are con-
structed of comparison boxes, called comparu-
toys, and fixed wires. Each of the comparators
has two input terminals and two output termi-
nals. If two numbers are fed to the two inputs,
the same numbers emerge on the outputs; in our
drawings, the sma.ller of these emerges upwards
and the greater downwards. See Figure 1.

All wires are directed links which connect a
net input terminal or a comparator output to a
net output terminal or a comparator input. If
we view the net as a directed graph, where the
comparators and net terminals play the role of
the vertices, and the wires play the role of the
directed edges, then the resulting directed graph

172

is assumed to be a,cyclic.
Sorting nets have been studied since the fifties

[l]. They are useful as fast circuits to perform
sorting of data, as well as for message routers,
by sorting the addresses which the messages are
aimed for.

In trying to pack sorting nets into a small area
or space, it is natural to investigate how much
grid area is necessary for embedding the the cor-
responding directed graph. In this study the fol-
lowing rules for a graph layout on the grid a,re
used:

l Vertices of the graph are mapped to grid-
points, at most one vertex per grid-point.

l Edges of the graph are to be routed along
grid paths by an edge disjoint mapping.
Namely, an edge of the grid may not belong
to more than one routing path. Note that
at most two paths can meet a.t a grid-point.
In particular, the meeting may be straight

or &~ock-knee: in the former, neither path
changes direction at the intersection point
and in the latter, both the paths change di-
rections simultaneously.

l If a vertex is mapped to a grid-point, then
all paths representing edges incident on this
vertex must begin or end at that grid-point,
and no other path is allowed to pass through
that point.

The yri$-clrea of a layout is defined to be A if
there is an a x b rectangle R which encompasses
the layout, namely, all grid-points of the la,yout
are either inside R or on its boundary, and A =
(a+ l).(b+ 1) is th, 1 e east real number for which
this holds. It is not required that the sides of
R be parallel to the grid lines or that u or b be
integers. For more information on the reasons
for this definition, see the appendix of [a].

We present the following results in this paper.
We present a lower bound of 0.5(N - 1)2 on the
grid-area needed for any sorting net (Section 2).
Of all sorting nets which use o(N2) compara-
tors, the bitonic sorting net of Batcher has been
known to have a layout of 0(N2), but a straight-
forward use of known techniques leads to a lay-
out of grid-area 20.25N ‘. Our main results are
two improved area-efficient layouts of the bitonic
sorter. We describe a flip-bitonic sorting net -
it is isomorphic to Batcher’s bitonic sorter but
leads naturally to a layout of grid-area less than
4N2 (Section 3). We then present a butterfly-
based layout of the bitonic sorter with grid-area
of 3N2 t O(N) (Section 4). The former does not
use knock-knees while the latter relies on them
and is more compact.

2 Lower and Upper bounds on
the Area of Sorting Nets

Consider a net with N input terminals and N
output terminals, of a structure similar to a sort-
ing net, except that instead of comparators one
has switching boxes. The difference is that a
switching box has to be set externally, and does
not decide on its own whether the numbers on
its inputs should stay in the same order on its
outputs, or be swapped. Such a net is called
rearrangeable (see, for example [3]) if every per-
mutation on the vector of N input numbers, fed
to the input terminals, can be realized by some
setting of the switching boxes.

The following theorem and its proof proceed
along lines initiated by Thompson [4].

Theorem 2.1 The grid-area of a reurrungeable
net for N inputs is greater than $(N - 1)2.

The proof is omitted from this abstract.

173

Since every sorting net is rearrangeable, the
lower bound on the grid-area, as in Theorem 2.1,
applies to sorting nets as well.

There is a sorting net of grid-area (N + 1)2.
One such net was presented in [5]. Yet, this net
may not be suita,ble, since it has s2(N”) compara-
tors? and the depth of the net, i.e., the masimum
length of a directed pa.th, in terms of compara-
tors, from input to output, is 2N-3. The bitonic
sorter of Batcher [8] has O(N log2 N) compara-
tors. We will discuss its layout area. Asymp-
totically, nets with fewer compara.tors are known
[(i] [7], but they hide an enormous constant, and
use expanders, which make their layouts in small
grid-area very unlikely to exist.

3 A Flip-Bitonic Sorter With-
out Knock-knees

In this section a new method to lay out the
bitonic sorter is described. The recursive con-
struction of this sorter is described from scratch,
including the proposed layout. The grid-area is
shown to be less than 4N2. Lines in the layout
are slanted a.t 45’ with respect to the input and
output columns. It is somewhat reminiscent of
Wise’s layout of the butterfly net. See [9].

Let us start with a few definitions and obser-
vations.

The tero-orle princi;nle says that if a network
sorts all 2N binary input vectors, then it sorts
any N-vector of real numbers. This theorem
is attributed by Knuth [l] to W.G. Bouricius.
See [I] for a proof. For this reason, only sorting
of zeros and ones is discussed.

A word of zeros and ones is called bZtoGc if it
is of the form OalbOcld, and either a or d is zero.
(Clearly, CL + b + c + cl = N.) *

‘Batcher called a real vector bitonic if it is first nonde-

Let w E {O,l}*, i.e., w is a binary word, De-
note by wT the reversed word, i.e., the word re-
sulting from a left-right flip of w.

Lemma 3.1 If the binary word wlwz is bitonic,
so Is 711;,w;.

The proof is omitted from this abstract.
Assume xi = 21x2. “XN, while y2 =

xN+lxN+2 ’ * ‘XZN. If ~1x2 is bitonic, ~1x5 is
called Jlip-bitonic.

However, if ~1x2 is bitonic, by Lemma 3.1, so
is ,y;x$. Thus, x:x2 is also flip-bitonic.

Our purpose is to construct a sorter of flip-
bitonic input vectors. Such a net, for N = 2”
inputs, is denoted by FM,. Its construction
is recursive, and FM1 consists of a single com-
parator. The construction of FM,+1 consists of
two copies of FM,, one above the other, with
an additional layer of comparators and wiring in
front of it. This is done as follows.

Consider now the array net shown in Figure 2.
It consists of a column of input terminals fed
with an input Vector 2122 . . . X2N, an array of N
comparators and a column of output terminals
producing the output vector yiy2 . . . y2~.

Lemma 3.2 If the input vector 21x2. . .X2N of
the army net is binary and flip-bitonic, then its
output vector yly2 . . . y2N satisfies one of the fob

lowing two conditions:

1. The vector y1 y2 * * . yN is all zeros and

YN+lYN+2 ’ ’ .y2N is bitonic.

2. The vector yJN+ryN+2 . . .yzjv is all ones and
YlY2 * * . yN is bitonic.

creasing a.nd t)hen nonincreasing, or if there is a circular
rotation of its elements which brings it to this form. By
using the zero-one principle we can restrict our discussion
to the definition given here.

174

The proof is omitted from this abstract.
Next, we add to the array net flip-

wiring, which converts ea.& of yry2 . . * ye a.nd
YN+l YN+2 * ’ ’ y2N from bitonic to flip-bitonic.
See Figure 3. The purpose of the additional flip-
wiring is to enable the connection of two half-size
sorters of flip-bitonic vectors. This completes the
description of .FM,+l and the proof, by induc-
tion on n, that it sorts. See Figure 4(b) and (c)
for 3M2 aad 3M3, respectively.

The construction of the complete Flip-Bitonic
Sorter, 3,,. is clone recursively. 31 is just a com-
parator, drawn with diagonal lines, just as 3Ml.
To build 3n+r, use two copies of 3n, an upper
and a lower, and attach the 2n+1 outputs to the
inputs of 3M,+r. See F’igure 5.

It is easy to see that the layout of & is en-
closed by a rectangle of height fi. (N - 1) and
length fi. (2N - (2 + log N)). Thus, the grid-
area is bounded by 4N2.

4 Bitonic Sorter Using Knock-
knees

In this section we present a tighter area layout
for the bitonic sorter. There are two main dif-
ferences between this construction and the one
presented in Section 3, namely, the construc-
tion here has lines aligned with the input/output
columns, and it uses knock-knees. We start our
description with a few definitions.

A butterfly permutntion Et,,, k 6 e, is a bi-
partite graph with L input and L output nodes,
where L = 2e. Each input node le,k [i], 0 5 i 5
L - I, is connected to two output nodes, O~,k[i],
and Oe,k[?], where 7” denotes the binary number
obtained by flipping the ICth most significant bit
of the binary number i.

The bitonic sorter network relies on bitonic

merger networks. The bitonic merger network
.K7, with N = 2” inputs is constructed recur-
sively. B7r is a single comparator. f37,+r with
inputs X[O, . . . ,2N - l] consists of the following
two layers, The first layer comprises N compara-
tors, Co,, . . , CN-1. The illpUtS of Ci are -x[i]
and X[N + i] for each i. The second layer com-
prises an upper and a lower copy of B7,. The
upper (respectively lower) output of C; is the ith
input to the upper (lower, respectively) copy of
,B7,%. The N-vector of outputs from the upper
copy of f?7,, followed by that of the lower copy
forms the 2N-vector output of B7,+r.

The bitonic sorter WIS,, on N = 2n inputs is
constructed recursively. B7Sr is a single com-
parator. BIS,+r is constructed by feeding the
inputs from an upper and a lower copy of BIS,;
the N outputs of the upper copy are fed to the N
upper inputs of a B’r,+r in that order, and the
N outputs of the lower copy of B7S, are fed in
the reversed order to the lower N inputs of the
BI,,+1. The entire network B7s, sorts N in-
puts [8]. (For alternative but equivalent versions
of the bitonic sorter networks, see [l]).

Our layout for the bitonic merger is based
on layouts of the butterfly permutations f?,,r,
and &,z. The primary challenge in obtaining
such layouts is to avoid column and row conflicts
amongst the connections. Consider two distinct
connections, one starting from grid row r, and
another ending at grid row r. Clearly, the for-
mer must turn away from grid row 1’ at, or to the
left of, the column used by the latter to reach
grid row r. For any row r, we refer to these two
columns as the in-column and the out-column,
respectively.

Initially, we restrict ourselves to two types of
connections: (i) straight connections, and (ii)
jogs. A jog is a horizontal-vertical-horizontal
path from input node (kr, 0) to output node

175

(k,, x), Lx # kr, with a vertical segment on some
column c, 0 < c < 2. We use two types of jogs: a
jog that has source (~1, 0) and destina,tion (Q, CC)
is a down-jog if 1’1 < T2, and an up-jog if T1 > 1‘2

(see Figure 7).

Lemma 4.1 A butterfly permutation XJe,k, for
b = 1,2, can be laid out on a grid with 2L + 1
rows and L - 1 columns by using only straight
connections and jogs. The column assipment
of a jog pwith input row T is given by the follow-
ing function f(~): f(~) = L - 2i + 1, for T = 4i;
f(T) = L - (T/2?) + 1, fOT T = di f 2.

Proof. We first describe the input-to-output
connections of I?c,~ on the grid. Its 2L input lines
are mapped to grid points (O,O), . . . , (2L - 1,O).
Input node i is connected to the two input lines
on rows 2i and 2i + 1. The output lines are
mapped to grid points (1, L + I), . . . , (2L, L •t 1).
Output node i is connected to the two output
lines on rows 2i + 1 and 2i + 2.

The connections from the input lines to the
output lines are as follows: (2i+l, 0) is connected
to (2i + 1, L + 1) via a straight connection, and
(2i, 0) is connected to (T •l- 2, L + 1) (rather than
to (i, L + 1) for reasons which will be cleaa later),
via a jog.

It is clear that the given column-assignment
function f is one-to-one, hence the assignment
is free of column conflicts. Therefore we only
need to show that the layout results in conflict-
free row assignments as well. To prove this, we
simply show that for any row T, oV = ir + 1, where
o, is the out-column, and i, is the in-column of
7'. (>onsicler T = 4i, 0 5 i 5 L/2 - 1. The in-
column, i,, is L - 2i+ 1. The input row of the jog

whose output row is T = 41. is 2(2i - l)k), hence
the out column, o,., of T is L - 2i. Similarly for

T = 4i + 2, its in-column iS f(~) and its out-
column is f(r) + 1. See Figure 8 for the layout
of a 32 input butterfly permutation f?p,r. I

In our bitonic sorter layout, we will need
to merge N/(2L) butterfly permutations of the
form either .B~,J, or Be,2 on the same set of
columns. If we simply concatenated these lay-
outs as described in the above lemma, we would
need to use N + N/(2L) rows. This is waste-
ful. In what follows, we describe a procedure to
merge the N/(2L) butterfly permutations Be,, by
using only N + 1 rows. We leave the details of
how to merge the butterfly permutations f?~ to
the full paper.

Henceforth we focus on the layout of the but-
terfly permutation .G’e,r, which, for brevity, we
will call the butterfly. The following observation
(from the proof of Lemma 4.1) will prove useful.

Observation 4.2 For any row T, if the jog that
has source (T, 0) has column assignment c, then
the jog that has the destination (T, x) has the col-
umn assignment c + 1.

we say that (T, c) : (T, c+ 1) iS an up-slot if the.

jog with source (T,O) is an up-jog with column
assignment c, and the jog with destination (T, x)

is a. down-jog with column assignment c-l- 1. Sim-
ilarly, we say that (T, c) : (r, c-i- 1) is a down-slot
if the jog with source (r,O) is a down-jog with
column assignment c, and the jog with destina-
tion (T, z) is an up-jog with column assignment
c -I- 1. See Figure 8 for up and down slots.

Lemma 4.3 Between columns c and c+ 1, there
is precisely one of an up-slot or a down-slot. If
there is an up-slot between columns c and c •t 1,
then there is a down-slot between columns c + 1
and c + 2, and vice versa.

We now show how to modify our layout
from Lemma 4.1 for melding two butterfly

176

permutations Bc,l with smallest number of rows
possible. We retain all the straight connections
aad a.ll the jogs a.s they are cscept the jogs on
rows 0 a.nd 2L, which aae modified to include
several turns. The jog in row 2L goes through
(2~5, l),(‘LL,%(Tz, %(7’2, W2L W=, 4),
(T4,4),... etc., where (T2,2) : (T2,3), (T,1,4) :

(1.4,5), -. . are up-slots. The jog in row 0 goes
through (0, o),(o, 1),(1‘1, ~),(7’1,2),(0, 2),(0, :j),
(W 3),(7?3, -‘i),(o, 4), . . . etc., where (1'1, 1) :

(rl, 2), (r:j,3) : (1'3.4), . . . are down-slots. We
concatenate N/(2L) copies of the butt,erfly of’ L
input nodes.

The ith such butterfly, 0 5 i 2 ili/(‘;zL) - 1
uses input lines from 2iL to 2(i -I- 1)L (there are
2L + 1 lines for each) using the modified con-
struction above from Lemma 4.1. In all, the to-
ta.l number of rows is N + 1. Notice that suc-
cessive copies of the butterfly from Lemma 4.1
in the layout above sha.re a, common row, that
is, the bottommost line in the upper butterfly
a.nd the t.opmost line of the lower butterfly sha.re
the same row. This ca.uses no problems since our
modified construction guarantees tha.t these two
lines ha.ve no common row portions because of
the alternating property of up- and down-slots
from Lemma 4.3.

Theorem 4.4 There exists a layout of the
bitonic sorter that uses an area of at m,ost 3N”+
O(N).

Proof. The la,yout of the complete bitonic sorter
,&KS, uses bit,onic mergers B7,Z,. . . , B7,. The
merger Blc uses one layer of compara.tors fol-
lowed by two f37g-1 mergers. In U7,, the wiring
between the input nodes and the first layer of
comparators is precisely the butterfly Be. The
wiring between the first layer of comparators
of B7p a,nd the two B7[-1 mergers is realized

as a butterfly permutation .Gf,2, which concate-
nates a. f?! butterfly to two We-1 butterflies as
in Lemma 4.1. Hence, altogether, the bitonic
merger B7e+l uses L+2L - 1 columns for L = 2e.
This implies tha,t the total number of columns
B7S,, uses is 3N f O(1) and the total area it
requires is 3N2 + O(N). I

The construction in Theorem 4.4 has the
drawback that the number of knock-knees along
some connections may be large. In each of the
layouts of the butterfly permutations, all connec-
tions with the exception of the topmost and the
botJtommost ones have either two knock-knees,
or no knock-knees a.t all. Now we show how to
modify tha,t construction so that each connection
has about the sa,me (small bounded) number of
knock-knees.

Lemma 4.5 The butterfly permutations f?e,l,
and We,2 with L = 2e input and output nodes
(hence, 2L input and output lines) have a layout
on the grid in which each input-to-output connec-

tion, involves n constarzt nrtmber of knock-knees;
the number of rows is 2L + 1 nncl the number
oj’ columns is L. These layouts are meldable in
the sense that any k suclz 1ayou.t.s can be concate-
n,ated on the same set of columns by only using
2kL + 1 rows.

Proof. (Sketch) To obtain the layout of the but-
terfly permutation W~,J, we begin with the layout
in Lemma 4.1 without the modifications done in
the melding step, aad borrow notation and def-
initions from there. So our starting point is as
shown in Figure 8 for C = 4. We divide the lay-
out into two halves, top and bottom, Further-
more we divide each half into two quarters, left
and right.

We first describe our construction for the top-
left quarter, and then show that the construction

177

for each of the quarters can be performed inde-
pendently, resulting in an implementation of the
circuit with a constant number of knock-knees
per connection.

Our construction relies on iterative applica,-
tion of a yore-ezclzcl?zge operation, defined a,s fol-
lows. The up-slots of the top-left quarter of t,he
layout in Lemma 4.1. from left to right have de-
creasing row indices. Specifically, they are at
positions (L - 2,1) : (L - 2,2), (L - G,3) :
(L - 6,4), . . ., (L - (4i + 2), 2i + 1) : (L - (4i t
2),2i+2),..., (2, L/2 - 1) : (2, L/2).

Consider the bottommost (hence leftmost) up-
slot (L-2,1) : (L-2,2), and the topmost (hence
rightmost) up-slot (2, L/2- 1) : (2, L/2). We use
these up-slots to exchange the row of the ceiling
connection with the row of the down-jog of the
topmost up-slot. This is done as follows: We
first move the stra.ight row segment of the ceiling
connection between (0,l) and (0, L/2) to (2,l)
and (2, L/2) d an connect the locations (0,1) and
(2, l), and the locations (0, L/2), and (2, L/2) by
two column segments. Simultaneously, we move
the straight row segment of the down-jog of the
topmost up-slot between (2,2) and (2, L/2--1) to
(0,2) and (0, L/2 - 1) and connect the locations
(2, L/2-1)and (0, L/2-ljby acolumn segment.

Note tl1a.t we cannot connect the loca,tions
(2,2) and (2,O) by a column segment t,o a,void
column conflicts. Hence we move the straight
row segment of the down-jog of the topmost up-
slot between (2,l) and (2,2) to the row of the
bottommost up-slot: (.L - 2,1) : (L - 2 : 2), and
connect the locations (L - 2,1) and (2,l) and
the locations (L - 2,2) a.nd (2,2) by two column
segments. Figure 10 demonstrates how a row-
exchange operation is performed.

This completes the row-exchange operation
between the ceiling connection a,nd the row seg-
ment of the down-jog of the topmost, up-jog.

Note that as a result of such an exchange both
the topmost and the bottommost up-slot are
moved to row 0.

We iteratively apply the same operation to
move the new ceiling connection to another POW.
Ouce a ceiling connection is moved, it is never ex-
changed again. The knock-knees incurred during
this operation will be only constant in number
per connection as they are generated during the
row-exchange operations which ase performed at
most twice per connection.

Note that the row-exchange operations in all
four quarters are performed independent of each
other. Moreover, the columns of the up-slots and
the down-slots are preserved. Hence two or more
butterflies can be melded as in Lemma 4.3 with
only a constant number of knock-knees per con-
nection.

The layout for butterfly permutation f?~ can
be constructed in a similar fashion. We leave the
details of this construction to the full paper. 1

Acknowledgments

We would like to thank Peter Winkler and Jeff
Laga,rias for help in the stucly of a proper defi-
nition for the grid area, Tiziana Calamoneri and
Ami Litman, for arousing our interest in the
problem, and Rajmohan Rajaraman and Mike
Garey for discussions.

References

[l] D.E. Knuth, The Art of Computer Pro-
gramming, Vol. 3: Sorting and Searching,
Addison-Wesley, 1973. See Section 5.3.4.

[2] S. Even Layout Area of Sorting Networks,
manuscript, 1997.

178

Figure 1: A comparison 110s

[3] N. Pippenger, “Telephone Switching Net-
works”, Proceedings of Symposia in Applied
Muthenzatics, Vol. 26, American Mathemat-
ical Society, 1982, pp. 101-133.

[4] C. Thompson, “Area-time Clomplexity for
VLSI”, Proceedings of the Eleverzth An~zrd

ACM Symposium on Theory oj Comprrting,
May 1979, pp. 81-88.

[5] W.H. Kautz, K.N. Levitt and A. Waksman,
“Cellular Interconnection Arrays”, IEEE
Trans. on Computers, Vol. C-17, No. 5, May
1968, pp. 443-451. See Fig. 2, page 444.

[6] M. Ajtai, J. Kolm6s and E. Szemerkcli,
“Sorting in Clog N Parallel Steps”, Com-
binatoricn, Vol. 3, 1953, pp. 1-19.

[7] M.S. Paterson, “Improved Sorting Networks
with O(log N) Depth”, Algorithuzica, Vol. 5,
1990, pp. 75-92.

[$I K. Batcher, “Sorting Networks and their
Applications”, Proc. of the AFIPS Spring
Joint C’omputi?zg Corlf., Vol. 32, 1968, pp.
307-3 14.

[9] D.S. Wise, “Compact La,youts of
Ba.nyan/FFT Networks”, VLSI sys-
tems a12cl Computations, H.T. Kung, et. al.
(editors), Computer Science Press, 1981.
pp. 186-195.

Figure 2: The array net

y6

y8

x2

x4

‘6

x8 d

Figure 3: The arra.y net with flip-wiring

179

~._................__....,
j x0

,x
YO ;

j xl yl j .._.
BTl

,..............,....._._................................,

; ;y---q+:y i

: ~~~---G--~;~ . .._ .._. ;
BT2

(4 (b)

: x0 b---a YO

i xl m--e-Y1

! x2
BT2

m---e Y2

: x3 7 Y3

i x7 ‘L Y4

: x6 - Y5
BT2

; x5 - ~6

: x4 p---o Y7
: ..,

BT3

Figure 4: The sorting net for flip-bitonic
vectors

input
Figure 6: The recursive construction of the
merger networks with 2,4, and 8 input and
lines.

bitonic
output

+-L -I-
down-jog up-jog

Figure 7: The two types of jogs: the down-jog

Figure 5: The sorting net for input vectors of
a.nd the up-jog.

length 16

180

top-ieftquerter r----___--________
! I
,
I

.-* UP

Figure 9: (a) Butterfly with 8 input (output)
nodes, 16 input (output) lines. (b) The input
and output line assignments on the grid leading
to the jog-only implementation. (c) The jog-only
implementation after the column assignments to
the jogs, (d) The meldable implementation with
non-constant knock-knees per connection.

-slot

Figure 8: The jog-only irnplelrlelltat,ioll of the (ai Ch) CC)
butterfly with 16 input (output) nodes. The
dashed rectangles demonstrate the notions of Figure 10: (a) The top-left quarter of the jog-
quarters and slots in the layout. only implementation of a 16 input (output) node

butterfly. (b) The row-exchange operation be-
tween the ceiling connection (thick line) with the
straight row connection of the down-jog of the
topmost up-slot. (c) The complete implementa-
tion with constant knock-knees per connection.

181

