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speedup (n) : An employer's demand for accelerated output without increased pay.- Webster's dictionary.1 IntroductionA priority queue is an abstract data type consisting of a dynamic set of data items with the followingoperations:� inserting an item,� deleting the item whose key is the maximum or minimum among the keys of all items.The variants described in this paper also support the following operations: deleting an item withany given key; �nding the item with the minimum or the maximum key; checking for an item witha given key; checking for the item with the largest key smaller than a given key; and checking forthe item with the smallest key larger than a given key.Priority queues are widely used in many applications, including shortest path algorithms, com-putation of minimum spanning trees, and heuristics for NP-hard problems (e.g. TSP). For manyapplications, priority queue operations (especially deleting the minimum or maximum key) are thedominant factor in the performance of the application. Priority queues have been extensively ana-lyzed and numerous implementations and empirical studies exist; see, e.g., [AHU74, Meh84, Jon86,SV87, LL96].This note presents an experimental evaluation of one of the priority queues recently introducedin [MVY94]: the (word-based) radix tree. This data structure is qualitatively di�erent than tra-ditional priority queues in that its time per operation does not increase as the number of keysgrows (in fact it can decrease). Instead, as in the van Emde Boas data structure [vKZ77], therunning time depends on the size of the universe { the set of possible keys { which is assumedto be f0; 1; : : : ; Ug, for some integer U > 0. Most notably, the data structure is designed to takeadvantage of any tolerance the application has for working with approximate, rather than exact,key values. The greater the tolerance for approximation, the smaller the e�ective universe size andso the greater the speed-up.More speci�cally, suppose that the data structure is implemented on a machine whose basicword size is b bits. When no approximation error is allowed, the running time of each operationon the data structure is expected to be close to c0(lgU)=(lg b), for some c0 > 0. It is expected tobe signi�cantly faster when a relative error tolerance, � > 0, is allowed. In this case, each key k ismapped to a smaller (approximate) key k� � dlg1+� ke, resulting with an e�ective universe U� thatis considerably smaller. In particular, when the universe size U is smaller than 2b, and the relativeerror is � = 2�j (for non-negative integer j), then the running time of each operation on the datastructure is expected to be close to c(1 + j= lg b), for some constant c > 0.The data structure is also unusual in that it is designed to take advantage of fast bit-basedoperations on machine words. Previously, such operations were used in the context of theoreticalpriority queues, such as those of Fredman and Willard [FW90a, FW90b, Wil92], which are oftenconsidered non-practical. In contrast, the data structure considered here appears to be simpleto implement and to have small constants; it is therefore expected (at least in theory) to be acandidate for a competitive, practical implementation, as long as the bit-based operations can besupported e�ciently.In this paper we report on an implementation of the word-based radix tree, on a demonstrationof the e�ectiveness of approximation for improved performance, and on a modest experimental1



testing which was designed to study to what extent the above theoretical expectations hold inpractice. Speci�cally, our experimental study considers the following questions:1. What may be a typical constant, c0, for the radix tree data structure with no approximationtolerance, in the estimated running time of c0(lgU)=(lg b);2. What may be a typical constant, c, for the radix tree data structure with approximation error� = 2�� > 0, for which the estimated running time is approximately c(1 + �= lg b); and3. How does the performance of the radix tree implementations compare with traditional heapimplementations, and what may be a typical range of parameters for which it may becomecompetitive in practice.We study two implementations of the radix tree: one top-down, the other bottom-up. The lattervariant is more expensive in terms of memory usage, but it has better time performance. The mainbody of the tests timed these two implementations on numerous randomly generated sequences,varying the universe size U over the set f210; 215; 220; 225g, the number of operations N over the setf215; 218; 221; 224g, and the approximation tolerance, �, over the set f2�5; 2�10; : : : ; U=25; 0g, wherethe case � = 0 corresponds to no tolerance for approximation. The tests were performed on a singlenode of an SGI Power Challenge with 2Gbytes of main memory.The sequences are of three given types: inserts only, inserts followed by delete-minimums,and inserts followed by mixed operations. Based on the measured running times, we identifyreasonable estimates to the constants c0 and c, for which the actual running time deviates from theestimated running time by at most about 50%.The bottom-up radix tree was generally faster than the top-down one, sometimes signi�cantlyso. For sequences with enough insertions, the radix trees were faster than the traditional priorityqueues, sometimes signi�cantly so.2 The Data StructureWe describe the the top-down and the bottom-up variants of the (word-based) radix tree priorityqueue.Both implementations are designed to take advantage of any tolerance of approximation in theapplication. Speci�cally, if an approximation error of � > 0 is tolerated, then each given key k ismapped before use to the approximate key k� � dlg1+� ke (details are given below). This ensuresthat, for instance, the find-minimum operation will return an element at most 1+ � times the trueminimum.Operating on approximate keys reduces the universe size to the e�ective universe size U�. Forcompleteness, we give the following general expression for U� (according to our implementation:U� := � 2dlgdlg(U+1)ee+dlg(1=�)e� 1 if � > 0U if � = 0. (1)Both the top-down and bottom-up implementations of the word-based radix-tree maintain acomplete b-ary tree with U� leaves, where b is the number of bits per machine word on the hostcomputer (here we test only b = 32). Each leaf holds the items having a particular approximatekey value k�. The time per operation for both implementations is upper bounded by a constanttimes the number of levels in the tree, which islevels(U; �) := dlgb(U� + 1)e � � lgb lgU + lgb(1=�) if � > 0lgb U if � = 0. (2)2



For U � 2b, � = 2��, and for b a power of two, we getlevels(U; �) � � d1 + �= lg be if � > 0d1 + lg(U)= lg be if � = 0.For all parameter values we test, the above inequality is tight, with the number of levels rangingfrom 2 to 5 and the number of leaves ranging from 210 to 225.As mentioned above, each leaf of the tree holds the items having a particular (approximate)key value. Each interior node holds a single machine word whose ith bit indicates whether the ithsubtree is empty. The top-down variant allocates memory only for nodes with non-empty subtrees.Each such node, in addition to the machine word, also holds an array of b pointers to its children.An item with a given key is found by starting at the root and following pointers to the appropriateleaf. It examines a node's word to navigate quickly through the node. For instance, to �nd theindex of the leftmost non-empty subtree, it determines the most signi�cant bit of the word. If aleaf is inserted or deleted, the bits of the ancestors' words are updated as necessary.The bottom-up variant pre-allocates a single machine word for every interior node, empty ornot. The word is stored in a �xed position in a global array, so no pointers are needed. The itemswith identical keys are stored in a doubly linked list which is accessible from the correspondingleaf. Each operation is executed by updating the appropriate item of the leaf, and then updatingthe ancestors' words by moving up the tree. This typically will terminate before reaching the root,for instance an insert needs only to update the ancestors whose sub-trees were previously empty.2.1 Details on implementations of the data structure and word operationsBelow we describe how the basic operations are implemented in each of our data structures. Wealso describe implementations of the word-based operations we require.2.1.1 Computing Approximate KeysGiven a key k, this is how we compute the approximate key k�, assuming � = 2�j for somenon-negative integer j. Let kB�1kB�2 : : :k0 be the binary representation of a key k � U , whereB = dlg(U + 1)e. Let m = maxfi : ki = 1g be the index of the most signi�cant bit of k. Let nbe the integer whose j-bit binary representation is bm�1bm�2 : : : bm�j (i.e., the j bits of k followingthe most signi�cant bit). Then k� := m2j + n:Implicitly, this mapping partitions the universe into sets whose elements di�er by at most a mul-tiplicative factor of two, then partitions each set into subsets whose elements di�er by at most anappropriate additive amount. Under this mapping, the universe of approximate keys is a subsetof f0; 1; : : : ; U�g, where U� is the largest integer whose binary representation has a number of bitsequal to dlgdlg(U + 1)ee+ j.12.1.2 Bottom-up implementationIn this section, we consider items with an approximate key V , whose bit representation is V =hVlg32 U� � � � ; V2V1i; i.e., Vi is the i'th least signi�cant bit of V .1This mapping can be improved a bit by using k0� := (m0 � j)2j + n0, where m0 := maxfj;mg and n =bm0�1bm0�2 : : : bm0�j. 3



The bottom-up implementation of the radix tree is a complete 32-ary tree with L = lg32Ulevels, where the leaves are said to be in level 0. The nodes in each level l are represented as entriesof an array Al which is of size 32L�l.Each entry in Al[i], l � 0, is a word of 32 bits, corresponding to the ith node in level l of thetree; the j'th bit in Al[i] is 1 if the subtree of its jth child is nonempty, and is 0 otherwise. Recallthat each unique key has a corresponding leaf in the radix tree. Given a key V 2 f0; 1; : : : ; U�g,consider its corresponding leaf, and denote by Il(V ) the array index of the level-l ancestor of thatleaf. Recall that for l � 1, each node has 32 subtrees. We let Bl(V ) be g if the gth subtree of theancestor indexed as Il(V ) includes the leaf.As can be easily veri�ed, for a key V = hVlg32 U� � � � ; V2V1i we have Il(V ) = hVlg32 U� � � � ; V5l+1i,and Bl(V ) = hV5l � � � ; V5l�4i.For each leaf, we keep a doubly linked list of the items whose keys are the one that correspondto the key of the leaf.Insert After inserting a new key V , for all levels l we need to have the property that Bl(V )thbit of Al[Il(V )] set to 1. We leverage on the fact that if prior to inserting V the property holds forsome l, then it also holds for all l0 > l. As implied by the name of the implementation, an itemwith key V is inserted in bottom up fashion. First we insert the item to the top of the linked listcorresponding to V . Starting with l = 1, if the Bl(V )th bit of Al[Il(V )] is 0, then we set it to 1; ifl < L, we increment l, and repeat. Otherwise (if it is 1, or l = L ) then we stop. (Note: we couldreplace testing the Bl(V )th bit of Al[Il(V )] by testing if Al�1[Il�1(V )] = 0.)Search The search for an item with a given key V is performed simply by checking whether theB1(V )ht bit of A1[V ] is 1 or not.Delete Given a key value V , we delete an item whose key value is V similar to how we performthe insertion. First we delete the topmost item of the linked list corresponding to V . If there areno items left in the linked list, we assign to the B1(V )th bit of A1[Il(V )] to 0. Then starting withl = 1, if Al[Il(V )] = 0, and l < L then we set Bl+1(V )th bit of Al+1[Il(V )] to 0, we increment l,and repeat. Otherwise (if Al[Il(V )] = 1, or l = L� 1 ) then we stop.Minimum The minimum operation work in top-down fashion: Starting from l = L, we iterativelycompute Il, the index of the least signi�cant bit (lsb) of Al[Jl+1], where JL+1 = 0, and Jl =hIL; IL�1; � � � ; Ili. The answer to the minimum query will be J0.Maximum The maximum operation is performed similar to the minimum operation by computingthe most signi�cant relevant bits rather than the least signi�cant bits.Successor Given a key V , we �nd among the items in the data structure, whose keys are � V ,the one with the smallest key. This is simply done �rst applying Search for V . If an item withkey value V exists, then we simply return it. Otherwise, we perform a search in the tree by (1)�nding the lowest common ancestor M of the leaf of V , which has a child H whose index is largerthan V , and then (2) �nding in the subtree of H , the leaf whose key is smallest.The nodes M and H is computed as follows: Starting from l = 1, we apply the nearest one toright word-operation (nor-as described later in this section) to Al[Il(V )], with index Bl(V ). Givena key V and an index i, nor(i; V ) is the index of the �rst bit that is equal to 1 to the right of(less signi�cant than) the given index. If at a given level l, the application of nor does not return4



a value (it might be the case that there is no 1 to the right of the Bl(V )th bit of Al[Il(V )]), thenwe increment l, and continue. The node indexed by Al0 [Il0(V )] which returns some index, i, is thenode M ; Therefore, the node Al0�1[hIl0(V ); ii] becomes the node H .The leaf in the subtree of H whose key is smallest is computed by applying the Minimum tothe subtree of H .Predecessor The predecessor operation is performed similar to the successor operation by re-placing all uses of nor operation with nol, the maximum with minimum and vice versa, left withright, less with more and vice versa.2.1.3 Top Down implementationThe top down implementation, similar to the bottom-up implementation, maintains a 32-ary treewith L = lg32U levels, where the leaves are said to be in level 0. An internal node M of this treehas at most 32 children, each of which can be accessed from M via an appropriate pointer kept inin the array P (M)[1 : 32]. If the ith child of M does not exist, then P (M)[i] is null. We also keepa machine word W (M) for denoting which children of M exists. The ith bit of W (M) is 1 only ifP (M)[i] is not null, and is 0 otherwise.For each distinct key value V for which there is an item in the data structure whose key is V ,there is a corresponding leaf in the tree. The lth level ancestor Ml(V ) of this leaf (L � l � 1), isde�ned recursively as the node pointed by P (Ml+1(V ))[Bl+1(V )]. The pointers P (M) of a node Mwhich is in level 1 point to the �rst entry of a linked list of items whose keys are equal to V .The basic operations in the top down implementation are performed similarly to the bottom-upimplementation. The main di�erence is memory allocation: rather than preallocating memory forall potential nodes in the tree, memory for a node is allocated when it is needed. Allocation ofmemory blocks, each capable of storing an internal node is handled by an initially empty stack.During an insertion operation it might be the case that a new internal node is created. The memoryblock for storing this new node is taken out of the top of the stack. If, however, the stack is empty,some 1000 new memory blocks are allocated and inserted in the stack. Similarly, if during a deletionoperation, an internal node in the tree is deleted, the memory block storing the node is emptiedand inserted in the stack for later use.We do not perform any garbage collection: once a memory location is allocated, it is not freedthroughout the entire use of the data structure.Insert The insertion of an item with key value V is performed as follows. Starting from theroot node, we traverse the tree in a top down fashion, visiting the nodes Ml(V ) in each level l > 0where the nodeMl(V ) is the node pointed by P (Ml+1(V ))[Bl+1(V )]. If this pointer is NULL, whichmeans that the node Ml(V ) does not exist (and hence the Bl+1(V )th subtree of the node Ml+1 isempty), we create the node Ml(V ), and assign P (Ml+1(V ))[Bl+1(V )] its address. We also assign 1to the Bl+1(V )th bit of W (Ml+1) Once we reach node M1(V ), we insert the item to the top of thelinked list whose �rst entry can be reached via P (M1(V ))[B1(V )].Search As in the case of insert, starting from the root node, we traverse the tree in a top downfashion, visiting the nodes Ml(V ) in each level l > 0, as long as it exists.Delete The deletion of an item with a given value V is performed as follows. Similar to insertion,we start from the root node and traverse the tree in a top down fashion, visiting the nodes Ml(V )5



in each level l > 0. Once we reach node M1(V ), we remove the topmost item from the linked listwhose �rst entry can be reached via P (M1(V ))[B1(V )]. If the linked list becomes empty then weassign the pointer P (M1(V ))[B1(V )] to null, and assign 0 to the [B1(V )]th bit of W (M1).Then starting from l = 1, we check whether W (Ml) is 0; and if it is the case, �rst delete thenode Ml(V ), then assign the pointer P (Ml+1(V ))[Bl+1(V )] to null, assign 0 to the [Bl+1(V )]th bitof W (Ml+1), �nally increment l, and continue.Minimum Starting from the root, visit in a top down fashion the nodes Nl, which are recursivelycomputed as the nodes pointed by P (Ml+1)[xl], where xl is the index of the smallest indexed pointerwhich is not null. The answer to the minimum query will be hxL; � � � ; x1i.Maximum The maximum operations is performed similar to the minimum operation by comput-ing the largest indexed pointers rather than the smallest indexed pointers when necessary.Successor Similar to the Successor operation in the bottom-up implementation, we �rst com-pute the nodes M and H , and then compute the leaf in the subtree of H whose key is the smallest.This is done as follows. We �rst compute the lowest common ancestor, Mj , of V , which exists,via straightforward top-down traversal. Starting from l = j, we apply the nearest one to rightword-operation (nor-as described later in this section) to W [Ml], with index Bl(V ). If at a givenlevel l, the application of nor does not return a value, then we increment l, and continue. The �rstnode Ml0 which returns some index, i, is the node M , and hence the node pointed by P (Ml0)[i] isthe node H .The leaf in the subtree of H whose key is smallest is computed by applying the Minimum tothe subtree of H .Predecessor The predecessor operation is performed similar to the successor operation by re-placing all uses of nor operation with nol, the maximum with minimum and vice versa, left withright, less with more and vice versa.2.1.4 Implementation of binary operationsBelow we describe howwe implemented the binary operations that are not supported by the machinehardware.msb(key). Themost signi�cant bit operation, ormsb is de�ned as follows: Given a key k,msb(k)is the index of the most signi�cant bit that is equal to 1 in k. We have three implementations ofthe operation:� The �rst method is starting from the lgU th� msb of the key and linearly searching the msbby checking next msb by shift left operation. We expect this method to be fast (just a fewshifts will be needed) for most values of the words.� A method for obtaining a worst-case performance of lg lgU� is based on binary search. Weapply at most lg lgU� masks and comparisons with 0 to be to determine the index of msbThis method is not used in any our experiments as it was slower than the above method inour experiments.� The last method is dividing the key to 4 blocks of 8 bit each, V4; V3; V2; V1, by shifts andmasks, and then search the msb of the most signi�cant non-zero block. This approach could6



be seen as a compromise between the two methods described above, and is used for thecomputation of the maximum and minimum keys.lsb(key). The least signi�cant bit operation, or lsb is de�ned as follows: Given a key k, lsb(k)is the index of the least signi�cant bit that is equal to 1 in k. The implementations for lsb aresimilar to those of msb (essentially, replacing above \most" with \least", \msb" with \lsb", and\left" with \right").We note that by using the above implementations for msb and lsb in our experiments, weexploited the fact that the input is random. For general applicability, we would need an implemen-tation that is e�cient for arbitrary input. This report is concerned mainly with the performanceof the radix tree data structure when e�cient bit-based operations are available, and thereforeexploiting the nature of input for e�cient msb and lsb executions is appropriate. Nevertheless,we mention an alternative technique (which we have not tested), that enables an msb and lsbimplementation using a few operations: one subtraction, one bit-wise XOR, one MOD, and onelookup to a table of size b.We describe the lsb implementation for a given value x. First, note that x 7! (x bitwise-xor(x� 1)) maps x to 2lsb(x)+1� 1. Next, note that there will be a small prime p slightly larger thanb such that 2i mod p is unique for i 2 f0; :::; p� 1g, because 2 generates the multiplicative mod-pgroup. Thus, the function x 7! ((xbitwise-xor(x� 1)) mod p) maps x to a number in f0; :::; p�1gthat is uniquely determined by lsb(x). By precomputing an array T of p � b b-bit words such thatT [(xbitwise-xor(x�1)) mod p] = lsb(x), the lsb function can subsequently be computed in a fewoperations. Examples of good p include 523 (b = 512), 269 (b = 256), 131 (b = 128), 67 (b = 64),37 (b = 32), 19 (b = 16), and 11 (b = 8).nol(index,key). The operation nearest one to left, or nol, is de�ned as follows: Given a key kand an index i, nol(i; k) is the index of the �rst bit that is equal to 1 to the left of (more signi�cantthan) the given index. The nol operation is implemented by using the operations shift right byindex and msb.nor(index,key). The operation nearest one the right, or nor , is de�ned as follows: Given a keyk and an index i, the nor(i; k) is the index of the �rst bit that is equal to 1 to the right of (leastsigni�cant than) the given index. The nor operation is implemented by using the operations shiftleft by index and lsb.3 The TestsIn this section we describe in detail what kind of tests we performed, the data sets we used andthe testing results. We verify from the testing results how well our theoretical expectations weresupported and interpret the variations.3.1 The test setsThe main body of the test timed two implementations on numerous sequences, varying the universesize U over the set f210; 215; 220; 225g, the number of operations N over the set f215; 218; 221; 224g,and the approximation tolerance, �, over the set f2�5; 2�10; : : : ; U=25; 0g. We note that the case� = 0 corresponds to no tolerance for approximation.The sequences were of three kinds: N insertions; N=2 insertions followed byN=2 delete-minimums;or N=2 insertions, followed by N=2 mixed operations (half inserts, one quarter deletes, and onequarter delete-minimums). Each insertion was of an item with a random key from the universe.7



Each deletion was of an item with a random key from the keys in the priority queue at the time ofthe deletion.For comparison, we also timed more \traditional" priority queues: the binary heap, the Fi-bonacci heap, the pairing heap and the 32-ary heap from the LEDA library [LED], as well as aplain binary search tree with no balance condition. None of these data structures are designed totake advantage of U or �, so for these tests we �xed U = 220 and � = 0 and let only N vary.23.2 The test resultsIn summary, we observed that the times per operation were roughly linear in the number of levelsas expected. Across the sequences of a given type (inserts, inserts then delete-minimums, orinserts then mixed operations), the \constant" of proportionality varied up or down typically byas much as 50%. The bottom-up radix tree was generally faster than the top-down one, some-times signi�cantly so. For sequences with enough insertions, the radix trees were faster than thetraditional priority queues, sometimes signi�cantly so.3.3 Estimating the constants c0 and cThe following table summarizes our best estimates of the running time (in microseconds) peroperation as a function of the number of levels in the tree L = level(U; �) (see Equation (2))for the two radix-tree implementations on the three types of sequences, as N , U , and � vary.These estimates are based on the sequences described above, and are chosen to minimize the ratiobetween the largest and smallest deviations from the estimate. The accuracy of these estimates incomparison to the actual times per operation is presented Figures 1 and 2.insert ins/del ins/mixedtop-down � > 0 �3:1 + 3:3L �2:9 + 3:4L �7:9 + 7:6L� = 0 �14:9 + 5:2L �11:4 + 4:4L �12:4 + 6:6Lbottom-up � > 0 1:3 + 1:3L 0:8 + 1:3L 1:1 + 1:6L� = 0 �4:8 + 1:8L �5:6 + 2:4L �4:8 + 2:2LThe variation of the actual running times on the sequences in comparison to the estimateis typically on the order of 50% (lower or higher) of the appropriate estimate. The bottom-upimplementation is generally faster than the top-down implementation. The � = 0 case is typicallyslower per level than the � > 0 case (especially for the bottom-up implementation).The table below presents for comparison an estimate of the time for the pairing heap (consis-tently the fastest of the traditional heaps we tested) as a function of lgN .insert ins/del ins/mixedbest traditional 1:69 + :009 lgN �29:6 + 2:45 lgN �16:8 + 1:28 lgN3.4 Demonstrating the e�ect of approximationOur experiments suggest that the radix tree might be very suitable for exploiting approximationtolerance to obtain better performance. In the following table we provide timing results for three2The use of approximate keys reduces the number of distinct keys. By using approximate keys, together withan implementation of a traditional priority queue that \buckets" equal elements, the time per operation for deleteand delete-min could be reduced from proportional to lgN down to proportional to the logarithm of the numberof distinct keys. We don't explore this here. 8
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Figure 1: For the plot in the upper left, the top-down radix tree was run on sequences of Ninsertions of a universe of size U with approximation tolerance � for the various values of N , U , and� > 0. Above the plot is an estimate (chosen to �t the data) of the running time per operation (inmicroseconds as a function of the number of levels L) for the top-down implementation on sequencesof insertions. To the right of the function is the number of sequences. Each sequence yields an \errorratio" | the actual time for the sequence divided by the time predicted by the estimate. The plotshows the distribution of the set of error ratios. Each histogram bar represents the fraction of errorratios near the corresponding x-axes label x. The curve above represents the cumulative fractionof sequences with error ratios x or less. There is one plot for each implementation/sequence-typepair. Typically, the error ratios are between 0:5 and 1:5.sequences of operations applied to the bottom up implementation with approximation tolerance� = 2�5; 2�10; 2�15; 2�20; 0, and the universe size U = 225. The �rst sequence consist of N = 221insertions, the second one consists of N=2 = 220 insertions followed by N=2 = 220 delete-minimums,and �nally the third one consists of N=2 = 220 insertions followed by N=2 = 220 mixed operations.Sequence 1 Sequence 2 Sequence 3top-down bottom-up top-down bottom-up top-down bottom-up� = 0 47.11 7.01 42.13 14.93 56.02 15.00� = 2�20 29.7 5.02 29.77 8.99 55.24 18.23� = 2�15 17.1 2.21 19.65 6.17 41.63 14.28� = 2�10 14.75 2.08 14.18 4.94 29.23 12.66� = 2�5 13.77 2.08 11.07 3.27 17.5 11.363.5 Some comparisons to traditional heapsOur experiments provide some indication that the radix tree based priority queue might be of prac-tical interest. Below we provide timing results for the bottom up implementation on three sequences9
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Figure 2: This �gure is analogous to Figure 1 but represents the case � = 0. Note the largervariation in insert times.for comparing the performance of the bottom up implementation and the fastest traditional heapimplementation from the LEDA library, which consistently occured to be the pairing heap. The�rst sequence consist of N = 221 insertions, the second one consists of N=2 = 220 insertions followedby N=2 = 220 delete-minimums, and �nally the third one consists of N=2 = 223 insertions followedby N=2 = 223 mixed operations; U = 225 and � = 0 for all sequences.These �gures suggest that under appropriate conditions { the size of the universe, the numberof elements, and the distribution of the keys over the universe { the radix tree can be competitivewith and sometimes better than the traditional heaps.Sequence 1 Sequence 2 Sequence 3Bottom-Up 7.01 14.93 104.38fastest traditional 3.96 44.43 249.73The pairing heap is quite fast for the insertion-only sequences. For the other sequences, fromthe above tables, we can give rough estimates of when, say, the bottom-up radix tree will be fasterthan the pairing heap. Recall that in the range of parameters we have studied,levels(U; �) = � 1 + lg(1=�)=5 if � > 01 + lg(U)=5 if � = 0.For instance, assume a time per operation of 3 + 1:5level(U; �) for the radix tree, and 2 lgN � 25for the pairing heap. Even for U as large as 225 and � = 0, the radix tree is faster once N is largerthan roughly 43000. If � > 1=1000, then the radix tree is faster once N is larger than roughly 9000.For direct comparisons on actual sequences, see Figure 3, which plots the speed-up factor (ratio ofrunning times) as a function of � on sequences of each of the three types.We also provide Figures 4, 5, and 6 to demonstrate the conditions under which the radix treeimplementations become competitive with the LEDA implementations.10



3.6 DiscussionThe variation in running times makes us cautious about extrapolating the results.The e�ect of big data sets The �rst source of variation is that in both implementations havingmore keys in the tree reduces the average time per operation, due to the following factors:� The top-down variant is slower (by a constant factor) when inserting if the insert instantiatesmany new nodes. The signi�cance of this varies | if a tree is fairly full, typically only a fewnew nodes, near the leaves, will be allocated. If the tree is relatively empty, nodes will alsobe allocated further up the tree.� The bottom-up variant is faster if the tree is relatively full in the region of the operation.As discussed above, bottom-up operations typically step from a leaf only to a (previously orstill) non-empty ancestor. This means operations can take time much less than the numberof levels in the tree.� The signi�cance of the above two e�ects depends on the distribution of keys in the trees. Forinstance, if the keys are uniformly distributed in the original universe (as in our experiments)then, when � > 0, the approximate keys will not be uniformly distributed { there will be morelarge keys than small keys in the e�ective universe. Thus, the rightmost subtrees will be fuller(and support faster operations); the leftmost subtrees will be less full (and therefore slower).The e�ect of memory issues On a typical computer the memory-access time varies dependingon how many memory cells are in use and with the degree of locality of reference in the memoryaccess pattern. A typical computer has a small very fast cache, a large fast random access memory(RAM), and a very larger slower virtual memory implemented on top of disk storage.Our test sequences are designed to allow the data structures to �t in RAM but not in cache. Thischoice reduces but does not eliminate the memory-access time variation | variation due to cachingremains. It is important to note that our results probably do not extrapolate to applications wherethe data structures do not �t in RAM; when that happens, the relative behaviors could changequalitatively as locality of reference becomes more of an issue.3 On the other hand, even with fairlylarge universes and/or a large number of keys, most of these data structures can �t in a typicalmodern RAM.Another memory-related issue is the number of bits per machine word b. In this paper, weconsider only b = 32. On computers with larger words, the times per operation should decreaseslightly (all other things being equal). Also, the relative speed of the various bit-wise operationson machine words (as opposed to, for instance, comparisons and pointer indirection) could a�ectthe relative speeds of radix trees in comparison to traditional priority queues.AcknowledgmentWe thank Jon Bright for participating in this research at an early stage, and for contributing tothe implementations.3Of all the priority queues considered here, the bottom-up radix tree is the most memory-intensive. Nonethelessit seems possible to implement with reasonable locality of reference.11
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121086420Figure 3: Speedup factor (running time for best traditional priority queue divided by time forbottom-up �-approximate radix-tree) as a function of � for three random test sequences withN � 220and U � 225.
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Figure 4: Time per operation (in �-seconds) varying with lgN , for a sequence of N inserts, forU = 225, with no approximation tolerance. One can observe that the time per operation in thetop-down implementation and the pairing heap does not vary with the number of operations, asexpected. For the bottom up implementation, the time per operation decreases with the increasingnumber of items, as explained above. 13
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Figure 5: Time per operation (in �-seconds) varying with lgN , for a sequence of N=2 inserts,followed by N=2 delete-mins, for U = 225 with no approximation tolerance. One can observe thatthe time per operation in the top-down and bottom-up implementations is decreasing with time.The non-linear increase in the running time of the pairing heap is possibly due to decreasing cacheutilization with increasing number of operations.
0

2

4

6

8

10

12

14

16

5 10 15 20

T
im

e 
pe

r 
op

er
at

io
n

log(N)

memory-intensive approx. p.q.
other approx. p.q.

binary tree
pairing heap

Figure 6: Time per operation (in �-seconds) varying with lgN , for a sequence of N=2 inserts,followed by N=2 mixed operations, for U = 225 with no approximation tolerance. The same trendas in Figure 5 can be observed. 14


