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Abstract 

A k e y  approach in  string processing algorithmics has 
been the labeling paradigm [KMR72], which is based on 
assigning labels to some of the substrings of a given 
string. If these labels are chosen consistently, they can 
enable fast comparisons of substrings. Until the first 
optimal parallel algorithm for  s u f i x  tree construction 
was given in [SV94], the labeling paradigm was consid- 
ered not to  be competitive with other approaches. In  
this paper we show that, this general method is also 
useful for  several central problems in the area of string 
processing: 

Approximate String Matching, 
Dynamic Dictionary Matching, 
Dynamic Text Indexing. 

The approximate string matching problem deals with 
finding a l l  substrings of a text which match a pattern 
“approximately”, i.e., with at most m differences. The 
differences can be in the fo rm of inserted, deleted, or 
replaced characters. 

The text indexing problem deals with finding al l  oc- 
currences of a pattern in  a text, after the text is prepro- 
cessed. In  the dynamic text indexing problem, updates 
t o  the text in the fo rm of insertions and deletions of 
substrings are permitted. 

The dictionary matching problem deals with finding 
all occwrences of each pattern out of a set o f  patterns 
an a text, after the pattern set is preprocessed. I n  the 
dynamic dictionary matching problem, insertions and 
deletions of patterns to  the pattern set are permitted. 
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1. Introduction 

As the size of electronically stored information grows 
rapidly, efficient methods for string processing are be- 
coming critical. In this abstract and its full version 
[SV96], we extend our work on parallel construction of 
a suffix tree [SV94] in a nontrivial manner, t o  obtain 
efficient algorithms for three fundamentally important 
problems: (i) approximate string matching, (ii) dy- 
namic dictionary matching, (iii) dynamic text index- 
ing. We describe each of these problems, discuss the 
relevant literature, and summarize our contributions 
below. 

Approximate String Matching This problem 
deals with finding all substrings of a text T tha t  match 
a pattern P ,  with the exception of a t  most m differ- 
ences, for some given integer m. The differences can 
be in the form of inserted, deleted or replaced charac- 
ters. Several deterministic algorithms for solving this 
problem are given in [SeSO], [LV85], [LV86], [GGSS], 
[LV88], [LV89], [GP90], and numerous others. All of 
these have worst case running time of a(tm). 

A probabilistic algorithm, given in [CL901 runs in 
O ( t )  expected t ime if m = O(p/logp). 

In this paper, we provide a deterministic algorithm 
for the approximate string matching problem, which 
runs in O(poly(m) t  logplp  + t ) ,  hence achieving linear 
time for poly(m) < O(p/ logp). 

Dictionary Matching This problem deals with pre- 
processing a set of patterns P(1) ,  P ( 2 ) , .  . . , P ( n )  of 
sizes p ( l ) , p ( 2 ) ,  . . . , p ( n )  respectively, to  find all occur- 
rences of each of the patterns once a text T is given 

The first linear algorithm for this problem is given 
in [AC75]. This algorithm preprocesses the patterns 



in O(d = p(1) + p ( 2 ) + ,  . . . , + p ( n ) )  time, and runs in 
O(t + tocc) time. Here tocc is the total number of oc- 
currences of all patterns in the text. 

In dynamic dictionary matching, updates to  the pat- 
terns occurring in the form of deletions and insertions 
of patterns are allowed. Algorithms for this problem 
have been provided in [AF91], [AFM92], [AFGGP94] 
and many others. Among known results, the best 
time is achieved in [AFILS93]. This algorithm pre- 
processes the patterns in O(d)  time, performs an up- 
date (i.e., insertion or deletion) of a whole pattern 
of size p in O(plogd/loglogd) t ime, and runs in 
O(( t  + tocc)logd/loglogd) time. 

In this paper, we provide a deterministic algorithm 
for dynamic dictionary matching problem, which pre- 
processes the patterns in O(d)  time, performs search in 
O(t + tocc) time, and updates in O(p)  time. 

Text Indexing This problem deals with preprocess- 
ing a text T to find all occurrences of a given pattern 
P .  The suffix tree data structure solves this problem 
in O(p+tocc) time, where tocc is the number of all oc- 
currences of P in T. Algorithms for constructing suffix 
trees were first provided in in [KMR72], and then in 
[We73], and [Mc76]. The latter two algorithms build 
the suffix tree in O(t )  time. This running time is also 
achieved by the serial execution of three new paral- 
lel algorithms given in [SV94], [Ha94], [FM96]. Suffix 
trees have proven their use in several domains [Ko94], 
[Ja90]. Other data structures, including the suffix ar- 
rays [MM90], are considered not as efficient as the suffix 
trees. 

In the dynamic text indexing problem, updates to  
the text in the form of insertions and deletions of sub- 
strings are permitted. Such updates can take O(t )  
time in a suffix tree; hence suffix trees are not suit- 
able for this problem. The border tree [GFB94] is 
the first alternative to the suffix tree in this domain. 
It is constructed in O(t )  time, and performs updates 
in terms of insertions and deletions of single char- 
acters in O(1ogt) time. It can perform searching in 
O(p  + tocc log i + i log p )  time, where i is the number of 
updated characters. A recent result, given in [FG95], 
enables O(p + tocc) time searching, and is constructed 
in O(t)  time. It performs updates in the form of dele- 
tion and insertion of a substring of size U in O(&+ U )  

time. 
In this paper, we provide a deterministic algorithm 

for dynamic text indexing problem, which preprocesses 
the text in O ( t )  time, performs searching in O(p+tocc) 
time, and performs updates of substrings in O(10g3 t + 
U) time. 

Organization of the Paper We start  our presen- 
tation by giving some preliminaries. Then, in section 
2, we describe a new linear time string matching algo- 
rithm, which demonstrates some of the main ideas be- 
hind our approach. We proceed to  give our algorithms 
for approximate string matching, dynamic dictionary 
matching and dynamic text indexing in Sections 3,  4 
and 5 respectively. We provide more details on our 
algorithms and their properties in the appendices. 

1.1. Some Preliminaries 

All the strings we deal with consist of characters 
from a fixed alphabet A of size a. Any finite string of 
charactcrs arc denoted by capital letters like P, R, S,  T .  
The size of a string R is denoted by r ,  the charac- 
ters of R are denoted by r l ,  r2, . . . , r,., and its sub- 
strings ri, ri+l, . . . , ri+j (1 < i 5 j < r )  are denoted 
by Ri,j. We define the reverse of the string R to  be 

Unless otherwise stated,  logarithms are base 2 ,  and 
where non-integer values are referred to in integer con- 
text, their ceiling is taken. 

rT , r?--l I . . . 1 

Comment to the Reader For simplicity, most of 
our informal outlines of algorithmic ideas suppress the 
case of periodicity in any  substring of the input. We 
provide the general versions of our algorithms which 
involve periodicities in the appendices and in [SV96]. 

2. A New String Matching Algorithm 

In this section, we present a new linear time algo- 
rithm for the classical string matching problem. The 
algorithm runs in four stages. 

In the first stage, we identify O ( t )  possibly overlap- 
ping substrings of the text T which we call cores, in 
O ( t )  time. This is done consistently, i.e., if among two 
identical substrings, we identify one of them as a core, 
then we identify the second one as a core as well. Each 
core is assigned a label. The labels are also chosen con- 
sistently, i.e., two cores get identical labels if and only 
if they are identical. We give the actual construction 
of the cores in Section 2.1. 

In the second stage, we identify the cores of P con- 
sistently with the cores of TI i.e., if a substring of P is 
identical to a core of TI then it is identified as a core 
as well. To label the cores of PI we use the labels of 
cores of T .  This stage takes O(p)  time. 

The cores play a crucial part  in all of our algo- 
rithms. Due to the following properties, the cores en- 
able to  compare substrings of T and/or P very effi- 
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ciently. These properties are formally given in Section 
2.2. 

Compact Representation Property: Any sub- 
string of size l can be uniquely represented as 
a concatenation of (possibly overlapping) only 
O(log1) of its cores. 

Consistent Representation Property: Identical 
substrings are composed of identical cores. 

In the third stage, we obtain the compact represen- 
tation of the pattern. We describe this stage in detail 
in Section 2.1. This st.age t8akes O(1ogp) time. 

In the fourth stage, we find which of the O ( t )  size 
p substrings of T match P in O(t)  time. By using the 
compact representations, we first show how to  elimi- 
nat,e the possibility of a match between P and all but 
O ( t / p )  such substrings, and then show how t o  verify if 
each of the remaining substrings actually matches P in 
Section 2.2. 

Complexity 
is O(t  + p ) .  

The total running time of all the stages 

2.1. The Core System and the Compact Repre- 
sentation of a String 

We show how to  identify O ( s )  cores of a string S. 
For this purpose we build a (logs level) fat-tree of de- 
gree log* s ,  as explained next. 

A fat-tree is a da ta  structure which is very similar t o  
a rooted tree, with the following difference: a node of 
a fat tree can have more than one parent, there might 
be more than one root and some non-root node may 
have no parents a t  all. 

Definition 1 (Fat-Tree) A fat-tree of degree d, 
with h levels is a DAG in which: (1) each node of level- 
i (1 < i < h )  has at most d child nodes, all at level- 
( i  - 1); (2) each node of level-(i - 1) has at most d / 2  
parent nodes; (3) there is at least one node at level-h; 
(4) the nodes at level-h are called roots and t h e y  have 
no parent nodes. Figure 1 illustrates how a fat-tree 
looks like. 

Figure 1. A fat-tree of degree 4, and its levels 

We derive all the O ( s )  cores of S in O(1ogs) iter- 
ations as follows. In iteration 0,  we designate all sin- 
gle character substrings of S as level-0 cores. These 
cores constitute the leaves (level-0 nodes) of our fat- 
tree. The  labels of level-0 cores are their respective 
characters themselves. In iteration i,  we designate the 
cores of level-i as follows: 

1. Consider the sequence of level-(i - 1) labels (of 
nodes). Using a variant of the “locally consistent 
parsing” (LCP) method of [SV94], which we de- 
scribe in Appendix A, we get (possibly overlap- 
ping) subsequences of O(log* s) labels each. Each 
label may appear in at most d / 2  = O(log* s )  sub- 
sequences and the number of subsequences will not 
exceed ~ 1 2 ’ .  

2. For each subsequence] we create a parent node of 
level-i. We connect this parent node to  all the 
nodes of the subsequence. Each such node repre- 
sents a core of level i. The  core of a node is defined 
as the concatenation of the cores of its children. 

3.  We give consistent labels to  all nodes of level-i and 
their respective cores, i.e., two nodes get identical 
labels if and only if their children are identical. 

In the end of the last iteration] we obtain O( 1) cores 
of level-log s. Among them, we call the leftmost one the 
main core of S. 

The cores of S and their labels are illustrated in 
Figure 2. 

S : ? a c d  a c a b d h c a d s a b d  a c  

Figure 2. The cores of an example string S = 
bacdacabdbcadcabdac and their labels. LCP proce- 
dure is not demonstrated. The main core is marked 
with a surrounding circle. We represent the labels of 
increasing levels with larger characters. 

The  compact representation of S is the sequence, 
from left t o  right, of the labels of the nodes of the 
fat-tree which do not have parents. The compact rep-  
resentation of a given substring R of S is defined as 
follows. The  part of the fat-tree if S which pertains t o  
R consists of all cores which fully fall with the bound- 
aries of R. Removing all other nodes from the fat-tree 
of S will provide a reduced fat-tree for R which gives 
the compact representation of R. 
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Given the fat-tree of S ,  the computation of the com- 
pact representation of any substring 12 takes O(1og r )  
time. We demonstrate how the compact representation 
of the string in Figure 2 is computed in Figure 3.  

S 

ComprcsssdS: b IO 6 I c 

Figure 3. The compact representation of the whole S 
obtained via the traversal of the fat-tree of S .  Notice 
that, among all the traversed nodes, only those whose 
labels are surrounded by a circle are of interest to us. 

2.2. Properties of Cores and the Compact Rep- 
resentations of Strings 

Once the cores of P and T are computed consis- 
tently, they satisfy the following important properties 
that  we give without proofs. We leave the proofs of 
these properties to the full version of the paper [SV96]. 

Property 1 (Consistency of the Cores) 
Suppose P as identical t o  a substring T k , k + p .  If Pi,j 
is a core at P of level-g, then T k + a - l , k + j - l  is  also a 
core at level-g, and has the same label as Pi,?. 

Property 2 (Compaction of the Cores) A n y  
pattern P can be uniquely represented as a concatena- 
tion of O ( 1 )  cores o f  level-0, O ( 1 )  cores of level-1, . . ., 
O ( 1 )  cores of level-log1 - 1, O ( 1 )  cores of level-logl, 
O(1) cores of level-log1 - 1 , .  . ., O(1) cores of level- 
1, .  . ., and 0(1) cores of level-0. 

These two properties are of fundamental importance 
to the correctness of our new string matching algo- 
rithm. Property 1 enables us to immediately eliminate 
matches between P and all but O ( t / p )  of the size p 
substrings of T .  It implies that  we only need to  con- 
sider these substrings as candidates for a match to  P .  
Property 2 ensures that  the compact representation (as 
computed in Section 2.1) of identical substrings of P 
or T are identical. 

Below we give some more properties of cores which 
will be used in our approximate string matching algo- 
rithm of section 3.  

The property below states that the overlap between 
two neighbor cores can not be too long. 

Property 3 (Maximum Overlap of Cores) 
Given a core C o f  level-logk, any of the neighbor cores 
of C can include a l l  but at least k of the characters of 
C .  

A corollary to property 3 states that  the exact 
matches of a core of P in T ,  can not be too close. 

Property 4 (Maximum Overlap of Matches) 
Suppose that a core C of P of level-logk (for any IC < p )  
matches exactly a substring D (which is necessarily a 
core) in TI then it can not exactly match any of the 
substrings of T whose starting (or ending) character is  
less fhan, k apart from the starting (or endin,g) charac- 
ter  of D.  

3. Approximate String Matching 

Given a text T, and an integer m ,  our approximate 
string matching algorithm finds all occurrences of a 
pattern P with a t  most m differences. The substring 
Ti,j is said to match P with a t  most m differences, if we 
can obtain P from Ti,j by applying at most m changes 
in one of the following forms each: 
Replacement: Replace a character of z,j with an- 
other character. 
Insertion: Insert a character in any location of Ti,j. 
Deletion: Delete a character from any location of z,j. 

A restricted version of the problem is the string 
matching with mismatches, in which only the differ- 
ences be in the form of replacements are allowed. 

The approximate string matching algorithm is a gen- 
eralization of the exact string matching algorithm we 
described above. The generalization is possible because 
of the following observations. 

Suppose z,j match P with m mismatches. Then: 
(1) We can write P 

as p = S(1),p(l),S(2),p(2),...,p(m),S(m + 11, and 
Z,j as Z,j = S ( l ) , t ( l ) ,  S ( 2 ) , t ( 2 ) ,  . . . , t ( m ) ,  S(m + 1)  
where each S(1) is a possibly empty substring (of both 
P and T ) ,  and p(1)  and t(1) are single characters. If 
Ti,j matches P with m differences, we can still parse P 
and Z,j similarly, with one difference: for any given 1, 
a t  most one of p(1 )  or t(1) might be a NULL character. 

(2) There is a t  least one substring S(1) whose size is 
a t  least p/m - 1. 

(3) Consider all substrings S(I) whose size is a t  least 
p/m - 1. Each of these substrings must have a main 
core of level-O(logp/m) or higher. Hence, among all 
level-log(p/m) cores of P ,  there should be a t  least one 
which match the corresponding core in Ti,j. 
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(4) The compact representations of each of the S( i )  
(1 2 i 2 ( m  + 1)) should be identical in both P and 
q j .  

Following these observations, we obtain an algo- 
rithm for string matching with mismatches below. We 
then give the description of the algorithm for string 
matching with differences in section 3.2. 

3.1. Algorithm for String Matching with m Mis- 
matches: 

Observation (1) states that if P matches G,j with 
m mismatches, P and T;>j should have a t  least one 
matching pair of cores of level-log(p/m). Hence, in step 
1, we use each level-logplm core in P as an “anchor” 
core (i.e., a core which should have an exact match), 
and we find all level-logplm cores in T that  match 
it.  There are at most m such cores in P and a t  most 
t m / p  in T which need to  be compared for a total of 
t m 2 / p  comparisons. This step eliminates all but at  
most t m 2 / p  candidate substrings that could match P .  

Now, we only need to  check if each of these candi- 
dates x,j, matches P (with at  most m mismatches). 
This can be done in O(p)  time, by comparing the char- 
acters of P and Ti,j. Since this gives an O(tm2)  time, 
we show how to  finish this task faster by utilizing ob- 
servation (4) below. 

Starting from each initial match found in step 1, we 
attempt to extend to  the left and to the right with the 
smallest possible number of mismatches. In general, we 
first try to  match the core to the immediate left of the 
initial match. In case of a success we continue to the 
next core to the left. In case of a failure we may need 
to  climb down the fat tree till we either find a match 
or reach the leaf level and find a single character of 
mismatch. Following a mismatch we may either find 
additional mismatches or start climbing up the fat tree 
to  find growing size matches. A similar procedure is 
used for extending the initial match to the right. 

Overall it is not difficult to see that  each of the 
climb up or climb down operation in the fat tree can 
be charged to  a mismatch. No more than 2 logplm 
operations could be charged to a mismatch and since 
we can abort after finding vi + 1 mismatches, these 
charges would total O ( m  logplm)  operations. In addi- 
tion, there will be at  most m matches a t  level logplm,  
hence the total number of operations per each of the 
t m 2 / p  initial matches is O(mlogp/m) and the overall 
time complexity is O ( t / p  x m3 logplm).  

3.2. Algorithm for Approximate String Match- 
ing 

Our approximate string matching algorithm is based 
on the algorithm for string matching with m mis- 
matches; however the techniques we use are much more 
involved and we give the algorithm without all its de- 
tails. 

First it is important to understand why the ap- 
proximate string matching is more involved than 
string matching with m mismatches: Intuitively, if a 
substring Ti,j matches P with m mismatches, this, 
for “most cases”, implies that  P does not match 
E+i,j+i, 3 + 2 , j + 2  and SO on. Hence, the candidate de- 
termination is much easier in this problem. 

In the approximate string matching problem, if Ti,j 
matches P with, say, 1 < m differences, then obviously 
the strings Ti.-l,j,Ti+l,j and so on would match P .  

This difficulty could be overcome by the following 
property, whose proof is provided in [SVSB]. This prop- 
erty states tha t ,  if in a “neighborhood” of T ,  a long 
substring R matches a substring S of P exactly, then 
there exists a match of P in the neighborhood, in which 
R is matched to S in full that  gives the smallest number 
of differences for any match in the neighborhood. 

Property 5 (Best Match) Let S be a substring 
of P ,  and R be a substring of T which exactly matches 
S .  Let S (and hence R)  have at least m level - logm 
cores. Consider all matches of P in  T in which S is 
fully matched with R. Among these matches, let Tijj 
be the one with smallest number (= n)  of differences. 
Then, for  any k in  the range i - m, . . . , i + k ,  and for 
any 1 in the range j - m, . . . , j + m, the match between 
T k , l  and P should have a i  least n differences, provided 
that n 5 m .  

This property provides the following intuition. If 
P and T have exactly matching substrings which are 
long enough, then in their immediate neighborhood 
(i.e. small shifts of at  most m characters to left or 
right) a match with the smallest number of differences 
can be obtained by taking their largest possible exact 
match and extending it to a full match with differences. 

In our algorithm, the anchor cores as described in 
the previous section will provide such initial long ex- 
act matches. Extending them to  left and right will be 
done as follows. We will find additional nearest long 
enough exact matches by using the fat trees of P and 
T. We then will use the standard dynamic programing 
algorithms for approximate matching (e.g. [LV89]) t o  
connect with them using the smallest possible number 
of differences. 
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A key observation is that  if no additional large ex- 
actly matching substrings exist and a big fraction of 
the pattern is not yet matched (possibly with few dif- 
ferences) then for small enough m, a match with m 
differences is impossible. 

Now we are ready to  describe our string matching 
with m differences algorithm. Our algorithm starts 
with the computation of the fat-trees and hence the 
cores of T and P .  This is illustrated in Figure 4. 

level 3 

d b a  c a b  d b c  a d - a b  d c a 

level 3 

P: level 2 

level 1 

level 0 
d - a  c a b d b c  a d  c a b d - a  

Figure 4. The fat-trees of P and the matching sub- 
string of T.  The differences in each level are denoted 
with bold letters. Note that there are at most 3 differ- 
ences in the labels of any level. The highest level core 
label which is identical in both P and T is marked 
with a circle 

Our algorithm has two major stages. In stage-1, 
similar to  the string matching with m mismatches al- 
gorithm, we use each level-logm core of P as the anchor 
core, and try to  find all exact matches of each such core 
in T .  In stage-2, we take each such match, and try to  
extend the match towards both right and left of the 
anchor core. This is done very similar to  the climbing 
up and climbing down processes of the string matching 
with m mismatches algorithm, with the following dif- 
ference: After applying the climb down process towards 
the right (or left) of the anchor core, and finding the 
first character which does not have a match, we can not 
immediately proceed with the climb up  process (unlike 
in the mismatches algorithm). 

Rather, we do the following. We consider the suffix 
of P ,  which starts a t  the end of the first character which 
does not have a match. In this suffix, we search for the 
first core of level-log(m2), which exactly matches its 
corresponding core (there exists only once such core) 

in T .  If there exists no such core among the leftmost 
(rightmost) m cores of level-log(m2) in this suffix, then 
we terminate search. If, however, there exists such a 
core C, we apply the standard dynamic programming 
techniques to find the best match of substrings lying 
between the anchor and C. Following this, we take C 
as the next anchor and further try to  extend the match 
towards right (left) of C by subsequent applications of 
a climb up, followed by a climb down procedure until 
we reach the right (left) end of P .  

The climb up and climb down procedures, each of 
which is followed by the application of the dynamic pro- 
gramming procedure can each be charged for a differ- 
ence in the match. Each climb up and climb down pro- 
cedure takes O(1ogp) time and each approximate string 
matching procedure for a substring of size O(m3)  takes 
O(m4) time. The total time for all climb up and climb 
down procedures is O(m1ogp). It is a simple exercise 
to reduce the total number of operations for the appli- 
cation of dynamic programming from O(m5) to  O(m4)  
for each match of each of the cores of P chosen as an an- 
chor. As the total number of matches between all level- 
logplm cores of P and T are O(m2) ,  the algorithm runs 
in O(t /p(m3 logp + m6)).  Again by using property 5, 
this can be reduced to  O(t /p(m2 logp + m5)).  

4. Dynamic Dictionary Matching Algo- 
rithm 

The input of our dictionary matching algorithm is a 
set of patterns P(1) ,  . . . , P(n) .  The output of our al- 
gorithm is the data structure D ,  which supports the 
following operations: 
Searching: Given a text T, find all occurrences of 
each of P(1) ,  ..., P ( n )  i n T .  
Insertion: Given a new pattern R = R I , .  . . , R,, in- 
sert R into D. 
Deletion: Given a pattern R = P( i )  in D ,  delete P ( i )  
from D. 

The simple string matching algorithm we gave above 
provides the basic intuition behind the dictionary 
matching algorithm. We know that if any of the pat- 
terns match a substring of the text, then the main core 
of the pattern and the substring should necessarily be 
aligned. 

To exploit this property, we first classify the patterns 
into groups according to  the level of their main core. 
We build an independent data structure for each group. 

Some Definitions For each pattern P( i )  (1 5 i 5 
n), define its main prejix to  be the prefix of P( i )  pattern 
which ends where its main core ends. Similarly define 
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its main su@x to be the suffix which begins where its 
main core begins. 

4.1. A Restricted Version of The Data Structure 

For obtaining a restricted version of our data struc- 
ture, we assume that  no main suffix of a pattern is a 
prefix of the main suffix of another pattern. Similarly 
we assume that no main prefix of any pattern is a suffix 
of the main prefix of another pattern. We also assume 
that the fat-tree of the patterns and the input text have 
been constructed. We generalize this algorithm for any 
set of patterns in [SVSB]. 

Definition 2 (Compact Trie) The ‘‘com- 
pact trie” of a set of strings, P (1 ) ,  P ( 2 ) ,  . . ., P ( i )  is 
the tree in which: 
each e d g e  is labe led  b y  a substring, 
each string P ( j )  is represented as a l e a f L ( j )  such that 
the concatenation of e d g e  labels from the root to L ( j )  
gives the string P ( j ) ,  
no prefixes of two sibling edges are identical. 

See Figure 5 for an illustration of a compact trie. 

Description of the Data Structure Consider the 
group of patterns whose main core is at  level-1. Our 
data structure for this group consists of two “compact 
trie”s. The first compact trie, denoted by Suf(l), is 
the compact trie of the compact representations of the 
main suffixes of the patterns in this group. The second 
compact trie, denoted by Pre(l), is the compact trie 
of the compact representations of the reverses of the 
main prefixes of the patterns in this group. The con- 
struction of a compact trie takes O(p(1) + . . . + p ( i ) )  
time [AFM92]. 

S l i  b c d 

SZ’ a b c h 

S i a  b c 
S 4 b  h a 

sz s1 s3 

CompaciTne of S1. S2. S3,S4 

Figure 5. The compact trie of a set of strings. 

Searching For each level of the fat-tree, for each core 
in that level: 
(1) Match it to the compact suffix trie of that level. 
This will result in a few match of suffixes of the pattern. 
(2) Finish by checking whether those matches extend 
to the left using the compact prefix trie. The restricted 
version of the problem, this can be done efficiently with 
no additional effort. 

Insertion We first compute the compact represen- 
tation pattern. Inserting the compact version of the 
pattern to any of the tries in O(T)  is straightforward. 

Deletion One simply removes the leaves representing 
the pattern in the tries. This takes only O(1) time. 
One also needs to update the core tables, which can be 
done in O ( r )  time. 

5. Dynamic Text Indexing 

The input of our text indexing algorithm is the text 
string T .  The output of our algorithm is the D S ( T )  
data structure, which supports the following opera- 
tions: 
Searching: Given a pattern P ,  find all occurrences of 
P in T. 
Insertion: Given a string S = s1,s2,. . . , s a ,  and a 
location i in T ,  insert S in T between its i - l th  
and ith characters, to obtain an updated text T‘ = 
T’I,~-I,  S,T,;t .  Update the data structure D S ( T )  to ob- 
tain DS( T’) . 
Deletion: Given a substring of T ,  Ti,j, delete Ti,j from 
T to obtain 7’’’ = T1,i-l,Tj+l,t. Update D S ( T )  to ob- 
tain DS(T/’) .  

Our dynamic text indexing data structure extends 
the ideas we used for the basic pattern matching al- 
gorithm and the dynamic dictionary data structure. 
However, to  achieve the desired complexity, we employ 
more involved techniques. 

As a first step we again compute the fat-tree of the 
cores of T. Then we build two separate data struc- 
tures for searching patterns of size smaller than log, &, 
(where a is the size of the alphabet A) and larger than 
log, 4. We employ a standard lookup table for pat- 
terns whose size is smaller than log,fi ,  and use a 
trie based approach, as used in the dynamic dictionary 
matching algorithm, for patterns whose size is larger 
than log,&. Please see [SV96] for a description of 
how these data structures are built and how the search 
and update operations are performed. 
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A. Description of LCP 

We give the description of the locally consistent parsing 
procedure (LCP) [SV94] below. 

Given a string of level-i labels in the Fat Tree, LCP 
determines the nodes and labels of level-(i + 1). More con- 
cretely, LCP derives “blocks” (or intervals) of size O(log* i), 
where 1 is an upper bound on the number of possible labels. 
These blocks define nodes. The labels are set so that two 
blocks which consist of identical level-i labels get the same 
level-(i + 1) label. As a first step, LCP handles each label 
in the string LCP whose neighbors are not identical to it. 
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For every such label z, LCP determines if it is the last 
label of a block in O(1og' I )  iterations, as follows. 
(1) For each label in the string, LCP computes its tag. The 
tag of a label is the index of the least significant bit in which 
the binary representations of the label and its left neighbor 
differ. 
(2) Then, each label is replaced by a new number which is 
obtained by the concatenation of two binary numbers: 
(i) the tag of the label and 
(ii) the value of the bit of the label whose index is the tag. 
As the initial range of labels are 0 , .  . . , I ,  they will be re- 
placed by numbers selected from 0 , .  . . , 2  log 1. 
(3) LCP applies the same procedure for log' I -  1 iterations. 
In the first iteration the range of labels would be reduced 
from 0 , .  . . , 1  - 1 to 2 log 1 - 1,  in the second iteration, to 
0 , .  . . , 2  log log 1 - 1 + 2, and in the last iteration to 0, . . . , 5 .  
(4) LCP sets a label z as the end of a block, if the left neigh- 
bor of 2 is a local minimum; i.e., z is less than both its right 
(which i s  z itself) and left neighbors. 

level - z labels 
between two neighbor level-(i + 1) block ends. This is since 
as a result of the log' 1 iterations the range for the resulting 
labels is 0...5. 

Once a symbol z is identified as the end of a block, the 
block is set to include the end label and its preceeding log' 1 
labels. 

As a second step, LCP handles substrings which consist 
of a single repeating label, as follows: 

(1) LCP finds the beginning and end of each substring 
that consists of a single label. 

(2) Starting from the first label in the substring, LCP 
divides the substring into blocks of size 2. If the substring 
is of odd size, then LCP sets the last block to be of size 
three. Notice that there are no overlaps between the blocks 
obtained by this procedure. 

One obvious thing to note is that during the labeling of 
these blocks, the ones whose size is two get different labels 
than those whose size is three. In subsequent iterations, 
the labels would actually indicate whether the number of 
labels that a block represents is two or three. 

Notice that there can be at most 0(1) 
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