
Efficient Approximate and Dynamic Matching of Patterns
Using a Labeling Paradigm

(extended abstract)

Suleyman Cenk Sahinalp

Uzi Vishkin *

University of Maryland at College Park and Bell Laboratories, Murray Hill

University of Maryland at College Park and Tel Aviv University, Israel

Abstract

A k e y approach in string processing algorithmics has
been the labeling paradigm [KMR72], which is based on
assigning labels to some of the substrings of a given
string. If these labels are chosen consistently, they can
enable fast comparisons of substrings. Until the first
optimal parallel algorithm for s u f i x tree construction
was given in [SV94], the labeling paradigm was consid-
ered not to be competitive with other approaches. In
this paper we show that, this general method is also
useful for several central problems in the area of string
processing:

Approximate String Matching,
Dynamic Dictionary Matching,
Dynamic Text Indexing.

The approximate string matching problem deals with
finding a l l substrings of a text which match a pattern
“approximately”, i.e., with at most m differences. The
differences can be in the fo rm of inserted, deleted, or
replaced characters.

The text indexing problem deals with finding al l oc-
currences of a pattern in a text, after the text is prepro-
cessed. In the dynamic text indexing problem, updates
t o the text in the fo rm of insertions and deletions of
substrings are permitted.

The dictionary matching problem deals with finding
all occwrences of each pattern out of a set o f patterns
an a text, after the pattern set is preprocessed. I n the
dynamic dictionary matching problem, insertions and
deletions of patterns to the pattern set are permitted.

*partially supported by NSF grant CCR-9416890

0272-5428/96 $05.00 0 1996 IEEE
320

1. Introduction

As the size of electronically stored information grows
rapidly, efficient methods for string processing are be-
coming critical. In this abstract and its full version
[SV96], we extend our work on parallel construction of
a suffix tree [SV94] in a nontrivial manner, t o obtain
efficient algorithms for three fundamentally important
problems: (i) approximate string matching, (ii) dy-
namic dictionary matching, (iii) dynamic text index-
ing. We describe each of these problems, discuss the
relevant literature, and summarize our contributions
below.

Approximate String Matching This problem
deals with finding all substrings of a text T tha t match
a pattern P , with the exception of a t most m differ-
ences, for some given integer m. The differences can
be in the form of inserted, deleted or replaced charac-
ters. Several deterministic algorithms for solving this
problem are given in [SeSO], [LV85], [LV86], [GGSS],
[LV88], [LV89], [GP90], and numerous others. All of
these have worst case running time of a(tm).

A probabilistic algorithm, given in [CL901 runs in
O (t) expected t ime if m = O(p/logp).

In this paper, we provide a deterministic algorithm
for the approximate string matching problem, which
runs in O(poly(m) t logplp + t) , hence achieving linear
time for poly(m) < O(p/ logp).

Dictionary Matching This problem deals with pre-
processing a set of patterns P(1) , P (2) , . . . , P (n) of
sizes p (l) , p (2) , . . . , p (n) respectively, to find all occur-
rences of each of the patterns once a text T is given

The first linear algorithm for this problem is given
in [AC75]. This algorithm preprocesses the patterns

in O(d = p(1) + p (2) + , . . . , + p (n)) time, and runs in
O(t + tocc) time. Here tocc is the total number of oc-
currences of all patterns in the text.

In dynamic dictionary matching, updates to the pat-
terns occurring in the form of deletions and insertions
of patterns are allowed. Algorithms for this problem
have been provided in [AF91], [AFM92], [AFGGP94]
and many others. Among known results, the best
time is achieved in [AFILS93]. This algorithm pre-
processes the patterns in O(d) time, performs an up-
date (i.e., insertion or deletion) of a whole pattern
of size p in O(plogd/loglogd) t ime, and runs in
O((t + tocc)logd/loglogd) time.

In this paper, we provide a deterministic algorithm
for dynamic dictionary matching problem, which pre-
processes the patterns in O(d) time, performs search in
O(t + tocc) time, and updates in O(p) time.

Text Indexing This problem deals with preprocess-
ing a text T to find all occurrences of a given pattern
P . The suffix tree data structure solves this problem
in O(p+tocc) time, where tocc is the number of all oc-
currences of P in T. Algorithms for constructing suffix
trees were first provided in in [KMR72], and then in
[We73], and [Mc76]. The latter two algorithms build
the suffix tree in O(t) time. This running time is also
achieved by the serial execution of three new paral-
lel algorithms given in [SV94], [Ha94], [FM96]. Suffix
trees have proven their use in several domains [Ko94],
[Ja90]. Other data structures, including the suffix ar-
rays [MM90], are considered not as efficient as the suffix
trees.

In the dynamic text indexing problem, updates to
the text in the form of insertions and deletions of sub-
strings are permitted. Such updates can take O(t)
time in a suffix tree; hence suffix trees are not suit-
able for this problem. The border tree [GFB94] is
the first alternative to the suffix tree in this domain.
It is constructed in O(t) time, and performs updates
in terms of insertions and deletions of single char-
acters in O(1ogt) time. It can perform searching in
O(p + tocc log i + i log p) time, where i is the number of
updated characters. A recent result, given in [FG95],
enables O(p + tocc) time searching, and is constructed
in O(t) time. It performs updates in the form of dele-
tion and insertion of a substring of size U in O(&+ U)

time.
In this paper, we provide a deterministic algorithm

for dynamic text indexing problem, which preprocesses
the text in O (t) time, performs searching in O(p+tocc)
time, and performs updates of substrings in O(10g3 t +
U) time.

Organization of the Paper We start our presen-
tation by giving some preliminaries. Then, in section
2, we describe a new linear time string matching algo-
rithm, which demonstrates some of the main ideas be-
hind our approach. We proceed to give our algorithms
for approximate string matching, dynamic dictionary
matching and dynamic text indexing in Sections 3, 4
and 5 respectively. We provide more details on our
algorithms and their properties in the appendices.

1.1. Some Preliminaries

All the strings we deal with consist of characters
from a fixed alphabet A of size a. Any finite string of
charactcrs arc denoted by capital letters like P, R, S, T .
The size of a string R is denoted by r , the charac-
ters of R are denoted by r l , r2, . . . , r,., and its sub-
strings ri, ri+l, . . . , ri+j (1 < i 5 j < r) are denoted
by Ri,j. We define the reverse of the string R to be

Unless otherwise stated, logarithms are base 2 , and
where non-integer values are referred to in integer con-
text, their ceiling is taken.

rT , r?--l I . . . 1

Comment to the Reader For simplicity, most of
our informal outlines of algorithmic ideas suppress the
case of periodicity in any substring of the input. We
provide the general versions of our algorithms which
involve periodicities in the appendices and in [SV96].

2. A New String Matching Algorithm

In this section, we present a new linear time algo-
rithm for the classical string matching problem. The
algorithm runs in four stages.

In the first stage, we identify O (t) possibly overlap-
ping substrings of the text T which we call cores, in
O (t) time. This is done consistently, i.e., if among two
identical substrings, we identify one of them as a core,
then we identify the second one as a core as well. Each
core is assigned a label. The labels are also chosen con-
sistently, i.e., two cores get identical labels if and only
if they are identical. We give the actual construction
of the cores in Section 2.1.

In the second stage, we identify the cores of P con-
sistently with the cores of TI i.e., if a substring of P is
identical to a core of TI then it is identified as a core
as well. To label the cores of PI we use the labels of
cores of T . This stage takes O(p) time.

The cores play a crucial part in all of our algo-
rithms. Due to the following properties, the cores en-
able to compare substrings of T and/or P very effi-

321

ciently. These properties are formally given in Section
2.2.

Compact Representation Property: Any sub-
string of size l can be uniquely represented as
a concatenation of (possibly overlapping) only
O(log1) of its cores.

Consistent Representation Property: Identical
substrings are composed of identical cores.

In the third stage, we obtain the compact represen-
tation of the pattern. We describe this stage in detail
in Section 2.1. This st.age t8akes O(1ogp) time.

In the fourth stage, we find which of the O (t) size
p substrings of T match P in O(t) time. By using the
compact representations, we first show how to elimi-
nat,e the possibility of a match between P and all but
O (t / p) such substrings, and then show how t o verify if
each of the remaining substrings actually matches P in
Section 2.2.

Complexity
is O(t + p) .

The total running time of all the stages

2.1. The Core System and the Compact Repre-
sentation of a String

We show how to identify O (s) cores of a string S.
For this purpose we build a (logs level) fat-tree of de-
gree log* s , as explained next.

A fat-tree is a da ta structure which is very similar t o
a rooted tree, with the following difference: a node of
a fat tree can have more than one parent, there might
be more than one root and some non-root node may
have no parents a t all.

Definition 1 (Fat-Tree) A fat-tree of degree d,
with h levels is a DAG in which: (1) each node of level-
i (1 < i < h) has at most d child nodes, all at level-
(i - 1); (2) each node of level-(i - 1) has at most d / 2
parent nodes; (3) there is at least one node at level-h;
(4) the nodes at level-h are called roots and t h e y have
no parent nodes. Figure 1 illustrates how a fat-tree
looks like.

Figure 1. A fat-tree of degree 4, and its levels

We derive all the O (s) cores of S in O(1ogs) iter-
ations as follows. In iteration 0, we designate all sin-
gle character substrings of S as level-0 cores. These
cores constitute the leaves (level-0 nodes) of our fat-
tree. The labels of level-0 cores are their respective
characters themselves. In iteration i, we designate the
cores of level-i as follows:

1. Consider the sequence of level-(i - 1) labels (of
nodes). Using a variant of the “locally consistent
parsing” (LCP) method of [SV94], which we de-
scribe in Appendix A, we get (possibly overlap-
ping) subsequences of O(log* s) labels each. Each
label may appear in at most d / 2 = O(log* s) sub-
sequences and the number of subsequences will not
exceed ~ 1 2 ’ .

2. For each subsequence] we create a parent node of
level-i. We connect this parent node to all the
nodes of the subsequence. Each such node repre-
sents a core of level i. The core of a node is defined
as the concatenation of the cores of its children.

3. We give consistent labels to all nodes of level-i and
their respective cores, i.e., two nodes get identical
labels if and only if their children are identical.

In the end of the last iteration] we obtain O(1) cores
of level-log s. Among them, we call the leftmost one the
main core of S.

The cores of S and their labels are illustrated in
Figure 2.

S : ? a c d a c a b d h c a d s a b d a c

Figure 2. The cores of an example string S =
bacdacabdbcadcabdac and their labels. LCP proce-
dure is not demonstrated. The main core is marked
with a surrounding circle. We represent the labels of
increasing levels with larger characters.

The compact representation of S is the sequence,
from left t o right, of the labels of the nodes of the
fat-tree which do not have parents. The compact rep-
resentation of a given substring R of S is defined as
follows. The part of the fat-tree if S which pertains t o
R consists of all cores which fully fall with the bound-
aries of R. Removing all other nodes from the fat-tree
of S will provide a reduced fat-tree for R which gives
the compact representation of R.

322

Given the fat-tree of S , the computation of the com-
pact representation of any substring 12 takes O(1og r)
time. We demonstrate how the compact representation
of the string in Figure 2 is computed in Figure 3.

S

ComprcsssdS: b IO 6 I c

Figure 3. The compact representation of the whole S
obtained via the traversal of the fat-tree of S . Notice
that, among all the traversed nodes, only those whose
labels are surrounded by a circle are of interest to us.

2.2. Properties of Cores and the Compact Rep-
resentations of Strings

Once the cores of P and T are computed consis-
tently, they satisfy the following important properties
that we give without proofs. We leave the proofs of
these properties to the full version of the paper [SV96].

Property 1 (Consistency of the Cores)
Suppose P as identical t o a substring T k , k + p . If Pi,j
is a core at P of level-g, then T k + a - l , k + j - l is also a
core at level-g, and has the same label as Pi,?.

Property 2 (Compaction of the Cores) A n y
pattern P can be uniquely represented as a concatena-
tion of O (1) cores o f level-0, O (1) cores of level-1, . . .,
O (1) cores of level-log1 - 1, O (1) cores of level-logl,
O(1) cores of level-log1 - 1 , . . ., O(1) cores of level-
1, . . ., and 0(1) cores of level-0.

These two properties are of fundamental importance
to the correctness of our new string matching algo-
rithm. Property 1 enables us to immediately eliminate
matches between P and all but O (t / p) of the size p
substrings of T . It implies that we only need to con-
sider these substrings as candidates for a match to P .
Property 2 ensures that the compact representation (as
computed in Section 2.1) of identical substrings of P
or T are identical.

Below we give some more properties of cores which
will be used in our approximate string matching algo-
rithm of section 3.

The property below states that the overlap between
two neighbor cores can not be too long.

Property 3 (Maximum Overlap of Cores)
Given a core C o f level-logk, any of the neighbor cores
of C can include a l l but at least k of the characters of
C .

A corollary to property 3 states that the exact
matches of a core of P in T , can not be too close.

Property 4 (Maximum Overlap of Matches)
Suppose that a core C of P of level-logk (for any IC < p)
matches exactly a substring D (which is necessarily a
core) in TI then it can not exactly match any of the
substrings of T whose starting (or ending) character is
less fhan, k apart from the starting (or endin,g) charac-
ter of D.

3. Approximate String Matching

Given a text T, and an integer m , our approximate
string matching algorithm finds all occurrences of a
pattern P with a t most m differences. The substring
Ti,j is said to match P with a t most m differences, if we
can obtain P from Ti,j by applying at most m changes
in one of the following forms each:
Replacement: Replace a character of z,j with an-
other character.
Insertion: Insert a character in any location of Ti,j.
Deletion: Delete a character from any location of z,j.

A restricted version of the problem is the string
matching with mismatches, in which only the differ-
ences be in the form of replacements are allowed.

The approximate string matching algorithm is a gen-
eralization of the exact string matching algorithm we
described above. The generalization is possible because
of the following observations.

Suppose z,j match P with m mismatches. Then:
(1) We can write P

as p = S(1),p(l),S(2),p(2),...,p(m),S(m + 11, and
Z,j as Z,j = S (l) , t (l) , S (2) , t (2) , . . . , t (m) , S(m + 1)
where each S(1) is a possibly empty substring (of both
P and T) , and p(1) and t(1) are single characters. If
Ti,j matches P with m differences, we can still parse P
and Z,j similarly, with one difference: for any given 1,
a t most one of p(1) or t(1) might be a NULL character.

(2) There is a t least one substring S(1) whose size is
a t least p/m - 1.

(3) Consider all substrings S(I) whose size is a t least
p/m - 1. Each of these substrings must have a main
core of level-O(logp/m) or higher. Hence, among all
level-log(p/m) cores of P , there should be a t least one
which match the corresponding core in Ti,j.

323

(4) The compact representations of each of the S(i)
(1 2 i 2 (m + 1)) should be identical in both P and
q j .

Following these observations, we obtain an algo-
rithm for string matching with mismatches below. We
then give the description of the algorithm for string
matching with differences in section 3.2.

3.1. Algorithm for String Matching with m Mis-
matches:

Observation (1) states that if P matches G,j with
m mismatches, P and T;>j should have a t least one
matching pair of cores of level-log(p/m). Hence, in step
1, we use each level-logplm core in P as an “anchor”
core (i.e., a core which should have an exact match),
and we find all level-logplm cores in T that match
it. There are at most m such cores in P and a t most
t m / p in T which need to be compared for a total of
t m 2 / p comparisons. This step eliminates all but at
most t m 2 / p candidate substrings that could match P .

Now, we only need to check if each of these candi-
dates x,j, matches P (with at most m mismatches).
This can be done in O(p) time, by comparing the char-
acters of P and Ti,j. Since this gives an O(tm2) time,
we show how to finish this task faster by utilizing ob-
servation (4) below.

Starting from each initial match found in step 1, we
attempt to extend to the left and to the right with the
smallest possible number of mismatches. In general, we
first try to match the core to the immediate left of the
initial match. In case of a success we continue to the
next core to the left. In case of a failure we may need
to climb down the fat tree till we either find a match
or reach the leaf level and find a single character of
mismatch. Following a mismatch we may either find
additional mismatches or start climbing up the fat tree
to find growing size matches. A similar procedure is
used for extending the initial match to the right.

Overall it is not difficult to see that each of the
climb up or climb down operation in the fat tree can
be charged to a mismatch. No more than 2 logplm
operations could be charged to a mismatch and since
we can abort after finding vi + 1 mismatches, these
charges would total O (m logplm) operations. In addi-
tion, there will be at most m matches a t level logplm,
hence the total number of operations per each of the
t m 2 / p initial matches is O(mlogp/m) and the overall
time complexity is O (t / p x m3 logplm).

3.2. Algorithm for Approximate String Match-
ing

Our approximate string matching algorithm is based
on the algorithm for string matching with m mis-
matches; however the techniques we use are much more
involved and we give the algorithm without all its de-
tails.

First it is important to understand why the ap-
proximate string matching is more involved than
string matching with m mismatches: Intuitively, if a
substring Ti,j matches P with m mismatches, this,
for “most cases”, implies that P does not match
E+i,j+i, 3 + 2 , j + 2 and SO on. Hence, the candidate de-
termination is much easier in this problem.

In the approximate string matching problem, if Ti,j
matches P with, say, 1 < m differences, then obviously
the strings Ti.-l,j,Ti+l,j and so on would match P .

This difficulty could be overcome by the following
property, whose proof is provided in [SVSB]. This prop-
erty states tha t , if in a “neighborhood” of T , a long
substring R matches a substring S of P exactly, then
there exists a match of P in the neighborhood, in which
R is matched to S in full that gives the smallest number
of differences for any match in the neighborhood.

Property 5 (Best Match) Let S be a substring
of P , and R be a substring of T which exactly matches
S . Let S (and hence R) have at least m level - logm
cores. Consider all matches of P in T in which S is
fully matched with R. Among these matches, let Tijj
be the one with smallest number (= n) of differences.
Then, for any k in the range i - m, . . . , i + k , and for
any 1 in the range j - m, . . . , j + m, the match between
T k , l and P should have a i least n differences, provided
that n 5 m .

This property provides the following intuition. If
P and T have exactly matching substrings which are
long enough, then in their immediate neighborhood
(i.e. small shifts of at most m characters to left or
right) a match with the smallest number of differences
can be obtained by taking their largest possible exact
match and extending it to a full match with differences.

In our algorithm, the anchor cores as described in
the previous section will provide such initial long ex-
act matches. Extending them to left and right will be
done as follows. We will find additional nearest long
enough exact matches by using the fat trees of P and
T. We then will use the standard dynamic programing
algorithms for approximate matching (e.g. [LV89]) t o
connect with them using the smallest possible number
of differences.

324

A key observation is that if no additional large ex-
actly matching substrings exist and a big fraction of
the pattern is not yet matched (possibly with few dif-
ferences) then for small enough m, a match with m
differences is impossible.

Now we are ready to describe our string matching
with m differences algorithm. Our algorithm starts
with the computation of the fat-trees and hence the
cores of T and P . This is illustrated in Figure 4.

level 3

d b a c a b d b c a d - a b d c a

level 3

P: level 2

level 1

level 0
d - a c a b d b c a d c a b d - a

Figure 4. The fat-trees of P and the matching sub-
string of T. The differences in each level are denoted
with bold letters. Note that there are at most 3 differ-
ences in the labels of any level. The highest level core
label which is identical in both P and T is marked
with a circle

Our algorithm has two major stages. In stage-1,
similar to the string matching with m mismatches al-
gorithm, we use each level-logm core of P as the anchor
core, and try to find all exact matches of each such core
in T . In stage-2, we take each such match, and try to
extend the match towards both right and left of the
anchor core. This is done very similar to the climbing
up and climbing down processes of the string matching
with m mismatches algorithm, with the following dif-
ference: After applying the climb down process towards
the right (or left) of the anchor core, and finding the
first character which does not have a match, we can not
immediately proceed with the climb up process (unlike
in the mismatches algorithm).

Rather, we do the following. We consider the suffix
of P , which starts a t the end of the first character which
does not have a match. In this suffix, we search for the
first core of level-log(m2), which exactly matches its
corresponding core (there exists only once such core)

in T . If there exists no such core among the leftmost
(rightmost) m cores of level-log(m2) in this suffix, then
we terminate search. If, however, there exists such a
core C, we apply the standard dynamic programming
techniques to find the best match of substrings lying
between the anchor and C. Following this, we take C
as the next anchor and further try to extend the match
towards right (left) of C by subsequent applications of
a climb up, followed by a climb down procedure until
we reach the right (left) end of P .

The climb up and climb down procedures, each of
which is followed by the application of the dynamic pro-
gramming procedure can each be charged for a differ-
ence in the match. Each climb up and climb down pro-
cedure takes O(1ogp) time and each approximate string
matching procedure for a substring of size O(m3) takes
O(m4) time. The total time for all climb up and climb
down procedures is O(m1ogp). It is a simple exercise
to reduce the total number of operations for the appli-
cation of dynamic programming from O(m5) to O(m4)
for each match of each of the cores of P chosen as an an-
chor. As the total number of matches between all level-
logplm cores of P and T are O(m2) , the algorithm runs
in O(t /p(m3 logp + m6)). Again by using property 5,
this can be reduced to O(t /p(m2 logp + m5)).

4. Dynamic Dictionary Matching Algo-
rithm

The input of our dictionary matching algorithm is a
set of patterns P(1) , . . . , P(n) . The output of our al-
gorithm is the data structure D , which supports the
following operations:
Searching: Given a text T, find all occurrences of
each of P(1) , ..., P (n) i n T .
Insertion: Given a new pattern R = R I , . . . , R,, in-
sert R into D.
Deletion: Given a pattern R = P(i) in D , delete P (i)
from D.

The simple string matching algorithm we gave above
provides the basic intuition behind the dictionary
matching algorithm. We know that if any of the pat-
terns match a substring of the text, then the main core
of the pattern and the substring should necessarily be
aligned.

To exploit this property, we first classify the patterns
into groups according to the level of their main core.
We build an independent data structure for each group.

Some Definitions For each pattern P(i) (1 5 i 5
n), define its main prejix to be the prefix of P(i) pattern
which ends where its main core ends. Similarly define

325

its main su@x to be the suffix which begins where its
main core begins.

4.1. A Restricted Version of The Data Structure

For obtaining a restricted version of our data struc-
ture, we assume that no main suffix of a pattern is a
prefix of the main suffix of another pattern. Similarly
we assume that no main prefix of any pattern is a suffix
of the main prefix of another pattern. We also assume
that the fat-tree of the patterns and the input text have
been constructed. We generalize this algorithm for any
set of patterns in [SVSB].

Definition 2 (Compact Trie) The ‘‘com-
pact trie” of a set of strings, P (1) , P (2) , . . ., P (i) is
the tree in which:
each e d g e is labe led b y a substring,
each string P (j) is represented as a l e a f L (j) such that
the concatenation of e d g e labels from the root to L (j)
gives the string P (j) ,
no prefixes of two sibling edges are identical.

See Figure 5 for an illustration of a compact trie.

Description of the Data Structure Consider the
group of patterns whose main core is at level-1. Our
data structure for this group consists of two “compact
trie”s. The first compact trie, denoted by Suf(l), is
the compact trie of the compact representations of the
main suffixes of the patterns in this group. The second
compact trie, denoted by Pre(l), is the compact trie
of the compact representations of the reverses of the
main prefixes of the patterns in this group. The con-
struction of a compact trie takes O(p(1) + . . . + p (i))
time [AFM92].

S l i b c d

SZ’ a b c h

S i a b c
S 4 b h a

sz s1 s3

CompaciTne of S1. S2. S3,S4

Figure 5. The compact trie of a set of strings.

Searching For each level of the fat-tree, for each core
in that level:
(1) Match it to the compact suffix trie of that level.
This will result in a few match of suffixes of the pattern.
(2) Finish by checking whether those matches extend
to the left using the compact prefix trie. The restricted
version of the problem, this can be done efficiently with
no additional effort.

Insertion We first compute the compact represen-
tation pattern. Inserting the compact version of the
pattern to any of the tries in O(T) is straightforward.

Deletion One simply removes the leaves representing
the pattern in the tries. This takes only O(1) time.
One also needs to update the core tables, which can be
done in O (r) time.

5. Dynamic Text Indexing

The input of our text indexing algorithm is the text
string T . The output of our algorithm is the D S (T)
data structure, which supports the following opera-
tions:
Searching: Given a pattern P , find all occurrences of
P in T.
Insertion: Given a string S = s1,s2,. . . , s a , and a
location i in T , insert S in T between its i - l th
and ith characters, to obtain an updated text T‘ =
T’I,~-I, S,T,;t . Update the data structure D S (T) to ob-
tain DS(T’) .
Deletion: Given a substring of T , Ti,j, delete Ti,j from
T to obtain 7’’’ = T1,i-l,Tj+l,t. Update D S (T) to ob-
tain DS(T/’) .

Our dynamic text indexing data structure extends
the ideas we used for the basic pattern matching al-
gorithm and the dynamic dictionary data structure.
However, to achieve the desired complexity, we employ
more involved techniques.

As a first step we again compute the fat-tree of the
cores of T. Then we build two separate data struc-
tures for searching patterns of size smaller than log, &,
(where a is the size of the alphabet A) and larger than
log, 4. We employ a standard lookup table for pat-
terns whose size is smaller than log,fi , and use a
trie based approach, as used in the dynamic dictionary
matching algorithm, for patterns whose size is larger
than log,&. Please see [SV96] for a description of
how these data structures are built and how the search
and update operations are performed.

Acknowledgements We would like to thank A.Funda
Ergun (Cornel1 U. and MIT) , Martin Farach (Rutgers U.),
and Yossi Matias (Bell Laboratories), for their suggestions
and help.

References

[AC75] A. Aho and M. Corasick, Efficient String Matching:
An Aid to Bibliographic Search, Communications of
the AGM (CAGiW), 1975

326

[AF91] A. Amir and M. Farach, Adaptive Dictionary
Matching, IEEE Symposium on Foundations of
Computer Science (FOCS), 1991

[AFGGP94] A. Amir, M. Farach, Z. Galil, R. Giancarlo,
K. Park, Dynamic Dictionary Matching, Journal of
Computer and System Sciences (JCSS), 1994

[AFILS93] A. Amir, M. Farach, R. Idury, A. La Poutre and
A. Schaffer, Improved Dynamic Dictionary Match-
ing, ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1993

[AFM92] A. Amir, M. Farach and Y. Matias, Efficient Ran-
domized Dictionary Matching Algorithms, Symyo-
sium on Combinatorial Pattern Matching (CPM),
1992

[AILSV88] A. Apostolico, C. Iliopoulos, G. Landau, B.
Schieber and U. Vishkin, Parallel Construction of
a Suffix Tree with Applications, Algorithmica, 1988

[BM77] R. Boyer and J. Moore, A Fast String Searching
Algorithm, Communications of the ACM (CACM),
1977

Approximate String
Matching in Sublinear Expected Time, IEEE
Symposium on Foundations of Computer Science
(FOCS), 1990

[CV86] R. Cole and U . Vishkin, Deterministic Coin Toss-
ing and Accelerating Cascades, Micro and Macro
Techniques for Designing Parallel Algorithms, A CM
Symposium on Theory of Computing (STOC), 1986

[FG95] P. Ferragina and R. Grossi, Optimal On-Line
Search and Sublinear Time Update in String Match-
ing, IEEE Symposium on Foundations of Computer
Science (FOCS), 1995

[FM96] M. Farach and M. Muthukrishnan, An optimal log-
arithmic time, randomized parallel string matching
algorithm, International Colloquium on Automata,
Languages and Programming (ICALP), 1996

[GG88] Z. Galil and R. Giancarlo, Data Structures and Al-
gorithms for Approximate String Matching, Journal
of Complexity (JComp), 1988

[GP90] Z. Galil and K. Park, An Improved Algorithm for
Approximate String Matching, SIAM Journal on
Computing (SIAMJC), 1990

[GFB94] M. Gu, M. Farach and R. Beigel, An Efficient
Algorithm for Dynamic Text Indexing, A CM-SIAM
Symposium on Discrete Algorithms (SODA), 1994

Optimal Parallel Suffix Tree Con-
struction, AGM Symposium on Theory of Comput-
ing (STOC), 1994

[Jag01 J. Ja’Ja’, Introduction to Parallel Algorithms,
Addison- Wesley, 1990

Identification of Repeated Patterns in Strings, Trees,
and Arrays, ACM Symposium on Theory of Com-
puting (STOC), 1972

[CL901 W. Chang and E. Lawler,

[Ha941 R. Hariharan,

[KMR72] R. Karp, R. Miller and A. Rosenberg, Rapid

[KMP77] D. Knuth, J. Morris and V. Pratt, Fast Pattern
Matching in Strings, SIAM Journal on Computing
(SIAMJC), 1977

Real Time Pattern Matching and
Quasi Real Time Construction of Suffix Trees, ACM
Symposium on Theory of Computing (STOC), 1994

[LV85] G. Landau and U. Vishkin, Efficient String Match-
ing in the Presence of Errors, IEEE Symposium on
Foundations of Computer Science (FOCS), 1985

[LV86] G. Landau and U. Vishkin, Introducing Efficient
Parallelism into Approximate String Matching and a
New Serial Algorithm, ACM Symposium on Theory
of Computing (STOC), 1986

[LV88] G. Landau and U. Vishkin, Fast String Matching
with k Differences, Journal of Computer and System
Sciences (JCSS), 1988

[LV89] G. Landau and U. Vishkin, Fast Parallel and Se-
rial Approximate String Matching, Journal of Algo-
rithms (JAlg), 1989

[MM901 U. Manber and G. Myers, Suffix Arrays: A New
Method for On-Line String Searches, SIAM Journal
on Computing (SIAMJC), 1993

[Mc76] E. McCreight, A Space-Economical Suffix Tree
Construction Algorithm, Journal of the i l C M
(JACM), 1976

[Me831 N. Meggido, Applying Parallel Computation Algo-
rithms in the Design of Serial Algorithms Journal
of the AGM (JACM), 1983

[SV94] S. Sahinalp and U. Vishkin, Symmetry Breaking
for Suffix Tree Construction, ACM Symposium on
Theory of Computing (STOC), 1994

[SVSG] S. Sahinalp and U. Vishkin, Efficient Approx-
imate and Dynamic Matching of Patterns Us-
ing a Labeling Paradigm, (Technical Report),
http://www.umiacs.umd.edu/ jenk/Research/ds.tr.ps

[Se801 P. Sellers, The Theory and Computation of Evolu-
tionary Distances: Pattern Recognition. Journal of

Algorithms (JAlg), 1980
Linear Pattern Matching Algorithms,

IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 1973

[Ko94] S. Kosaraju,

[We731 P. Weiner,

A. Description of LCP

We give the description of the locally consistent parsing
procedure (LCP) [SV94] below.

Given a string of level-i labels in the Fat Tree, LCP
determines the nodes and labels of level-(i + 1). More con-
cretely, LCP derives “blocks” (or intervals) of size O(log* i),
where 1 is an upper bound on the number of possible labels.
These blocks define nodes. The labels are set so that two
blocks which consist of identical level-i labels get the same
level-(i + 1) label. As a first step, LCP handles each label
in the string LCP whose neighbors are not identical to it.

327

http://www.umiacs.umd.edu

For every such label z, LCP determines if it is the last
label of a block in O(1og' I) iterations, as follows.
(1) For each label in the string, LCP computes its tag. The
tag of a label is the index of the least significant bit in which
the binary representations of the label and its left neighbor
differ.
(2) Then, each label is replaced by a new number which is
obtained by the concatenation of two binary numbers:
(i) the tag of the label and
(ii) the value of the bit of the label whose index is the tag.
As the initial range of labels are 0 , . . . , I , they will be re-
placed by numbers selected from 0 , . . . , 2 log 1.
(3) LCP applies the same procedure for log' I - 1 iterations.
In the first iteration the range of labels would be reduced
from 0 , . . . , 1 - 1 to 2 log 1 - 1, in the second iteration, to
0 , . . . , 2 log log 1 - 1 + 2, and in the last iteration to 0, . . . , 5 .
(4) LCP sets a label z as the end of a block, if the left neigh-
bor of 2 is a local minimum; i.e., z is less than both its right
(which i s z itself) and left neighbors.

level - z labels
between two neighbor level-(i + 1) block ends. This is since
as a result of the log' 1 iterations the range for the resulting
labels is 0...5.

Once a symbol z is identified as the end of a block, the
block is set to include the end label and its preceeding log' 1
labels.

As a second step, LCP handles substrings which consist
of a single repeating label, as follows:

(1) LCP finds the beginning and end of each substring
that consists of a single label.

(2) Starting from the first label in the substring, LCP
divides the substring into blocks of size 2. If the substring
is of odd size, then LCP sets the last block to be of size
three. Notice that there are no overlaps between the blocks
obtained by this procedure.

One obvious thing to note is that during the labeling of
these blocks, the ones whose size is two get different labels
than those whose size is three. In subsequent iterations,
the labels would actually indicate whether the number of
labels that a block represents is two or three.

Notice that there can be at most 0(1)

328

