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A b s t r a c t  

Suffix trees are the main data-structure in string matching algorithmics. There 
are several serial algorithms for suffix tree construction which run in linear time, but 
the number of operations in the only parallel algorithm available, due to Apostolico, 
Iliopoulos, Landau, Schieber and Vishkin, is proportional to nlogn. The algorithm 
is based on labeling substrings, similar to a classical serial algorithm, with the same 
operations bound, by Karp, Miller and Rosenberg. We show how to break symmetries 
that occur in the process of assigning labels using the Deterministic Coin Tossing 
(DCT) technique, and thereby reduce the number of labeled substrings to linear. 
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1 I n t r o d u c t i o n  

Suffix trees are apparently the single most important data-structure in the area of string 
matching. 

We present a parallel method for constructing the suffix tree T of a string S = sl .. �9 sn 
of n symbols, with sn being a special symbol $ that appears nowhere else in S. We use A to 

denote  the  alphabe$ of S. The suffix tree T associated with S is a rooted tree with n leaves 
such that: 

(1) Each path from the root to a leaf of T represents a different suffix of S. 

(2) Each edge of T represents a nonempty substring of S. 

(3) Each nonleaf node of T, except the root, must have at least two children. 

(4) The substrings represented by two sibling edges must begin with different characters. 

An example of a suffix tree is given in Figure 1. 

suffix 1 
p suffix 2 

i ~ suff'~ 4 suffix 5 

S :  0 1 0 1 $ 

zufflx I suffix 3 suffix 5 suffix 2 sufl-~x 4 

Figure 1: Suffix tree T of string S -- 0 1 0 1 $ 

Serial algorithms for suffix tree construction were given in [KMR72], [We73], and [Mc76]. 
The two latter algorithms achieve a linear running time for an alphabet whose size is constant. 

A parallel algorithm was given in [AILSV88]. 

A S y m m e t r y  B r e a k i n g  Cha l l enge :  As in the algorithm of [KMR72] work complexity 
of the above mentioned parallel algorithm is O(nlogn). The approach of [KMR72] and 
[AILSV88] does not lend itself to linear work for the following reason: As these algorithms 
progress, they label all n - 1 substrings of size 2, then all n - 3 substrings of size 4, and in 
general all n - 2 i + 1 substrings of size 2 i (1 < i _< log n). This results in a number of labels 
which is proportional to n log n and this dictates the work complexity. The extra logarithmic 
factor in the label-count is due to the increasing redundance among these substrings (because 
of the overlaps), as they become longer. The problem is that there has been no consistent 
way for selecting only one among a subset of overlapping substrings, since they all "look- 
alike". The main new idea of this paper is in introducing a solution to this symmetry breaking 



24 

problem. Our most  interest ing concrete result  is in being able to build a suffix tree using 
only a linear number of labels. 

The general area of string matching has been enriched by parallel methods that enabled 
new serial algorithms as in this paper. Previous examples include [Ga85], [Vi85], and [Vi91]. 
The new method is also relevant for sequence analysis in compressed data, since it allows 
for consistent compression of data. This can be done in the context of parallel or serial 
algorithms. Applications of the new method for data compression will be discussed in the 
full version. 

The method described in this paper leads to several incomparable complexity results as 
described in [SV93]. We quote here only one which can be derived with reasonable effort 
from our description. For an alphabet whose size is polynomial in n, the method gives an 
O(nlog* n) work algorithms and O(n ~) time for any constant 0 < e < 1. 

2 T h e  A l g o r i t h m  

2.1 High-level Description 

The algorithm works in two stages. In the first stage we attach labels to various substrings 
of S, recognizing some identities. This is done in iterations. In iteration 1, S is partitioned 
into blocks of size 2 or 3 characters. Each block is labeled with a number between 1 and n, 
in a way which satisfies the following two consis tency properties:  

Par t i t ion-cons is tency  (we state this property informally) Let Xi be a "long enough" 
substring of S (starting) at location i and let Xj be a substring at location j ,  which is equal 
to Xi; then, with the exception of some margins, Xi and Xj will be partitioned in the same 
way. 

Label-consistei-~cy All blocks consisting of the same string of characters will get the same 
label. 

An example of consistent partitioning and consistent labeling is given in Figure 2. 

So, iteration 1 "shrinks" S = S(0), into a new string S(1), reducing its length by a factor 
of at least two. Subsequent iterations apply the same procedure. Iteration i, i = 2,3, . . .  
shrinks string S(i - 1) into string S(i) satisfying similar partition-consistency and label- 
consistency properties. The size of strings S(i) will be at most n/2 i. 

The second stage is devoted to constructing the suffix tree of S in iterations. The input 
for the last iteration is T(1), which is the suffix tree of (some kind of) labels which are derived 
from S(1). The last iteration constructs the suffix tree of S(0) = S. The i'th-prior-to-the- 
last iteration constructs the suffix tree T(i) (the suffix tree of labels derived from S(i)), by 
using T ( / +  1) . 
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labels: 1 3 5 7 5 3 5 15 

• different blocks and hbetr on the mm'g~u 
~y$-..r~ 

Figure 2: Consistent partitioning, margins, and consistent labeling 

2 . 2  F i r s t  S t a g e  

Let R, a string of characters (of size m), be the input for an iteration of the first s tage.  
The iteration partitions R into blocks of size 2 or 3 and labels each block. The problem is 
how to do it to satisfy partition-consistency (defined formally later) and label-consistency. 
We first describe the main steps of an iteration, and then give a detailed description. 

The main steps of an iteration: 

Each character ri checks if it is in a substring of length 2, or more, of a single repeated 
character. If yes (i.e, ri = r~-i or ri = ri+l), it uses procedure LENGTH-BASED partitioning 
(or, procedure LENGTH-BASED for short) for obtaining the block partitioning. If no, 
it uses procedure CONTENT-BASED partitioning (or, procedure CONTENT-BASED for 
short) for obtaining the block partitioning. (Comment: The case were some character r~ is 
not part of a substring of a single repeated character but its previous character rl-a as well 
its next character ri+l are both part of such substrings, need a separate treatment which is 
suppressed in this presentation.) 

The reader is asked to be alert to the following: in order to better convey the main ideas 
of our algorithm, we s y s t e m a t i c a l l y  suppressed ,  or  de fe r red  dealing with.the important 
case of substrings consisting of a single repeated character. Dealing with this case is relatively 
simpler, and it does not change the essentials of most of the new techniques presented in 
this paper. 

We start with describing procedure CONTENT-BASED. Consider a substring 
RD = r . . . .  rz, where r i r  ri+l, for a ~ i < ft. Namely, we do not allow a sub- 
string of the form an. The main idea behind the partitioning procedure below is the use of 
the deterministic coin tossing technique of Cole and Vishkin [CV86a] for dividing RD into 
blocks. 
(Comment. Our use of the deterministic coin tossing technique is novel. We will use it 
for deriving "signatures" of strings, mapping similar substrings to the same signature. The 
only previous paper which made use of this technique for producing signatures is apparently 
by Mehlhorn, Sundar and Uhrig [MSU94]. They limited these signatures to compare full 
strings, and did not have to deal either with consistency relative to substrings, or to consider 
assigning signatures for strings of repeated characters (i.e. in the form aaa...). ) 
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1. Put  a divider to the left of r~ and to the right of r~. Each instruction for putting 
a divider below should be augmented with the following caveat: we actually put the new 
divider only if it does not create a block consisting of a single character. 

2. Put  a divider to the right of ro+l. Put a divider to the left of r~-l .  

3. For each character vl of RD compute tagi , the index of the least significant bit of rl 
which is different than ri+l in binary representation. If ri+l does not exist (for now, this can 
happen only if i = m), set tag; := 0. 

4. For each character r; of Rv ,  compare tagl with tagi+ a and tagi_a. If any of them does 
not exist (for now this can happen if i = 1, or i = m), take the non-existing value to be 
0. For all "strict local maxima" (i.e., tagi > tagi+ 1 and tag i > tagi_ 1 ) put a block divider 
between ri and ri+l. For all "weakly local maxima" (i.e. ta9i > tagi+l, and tag i > tagi_l), 
put  a block divider between rl and ri+~, if bit d i f f i  of ri is 1. 

5. For each substring of RD, which lies between two dividers, do the following. If the 
substring has < 3 elements those elements quit. Otherwise, for each character rl, replace 
character ri by tagi, and recursively apply the CONTENT-BASED procedure separately to 
each substring (which lies between two dividers). 

Example Let R . . . .  3 3 8 4 2 1 2 4 8 4 8 4 8 8 . . . .  Typically, we will apply the 
CONTENT-BASED procedure to a longest substring which satisfies the input conditions 
which in this case will be: 
Ro = 8 4 2 1 2 4 8 4 8 4 .  AKer applying steps 1 and 2 we have: 
18 4[2 1 2 4 8 418 41 . In binary representation RD becomes: 
1000 010010010 0001 0010 0100 1000 010011000 0100 , and the corresponding tag values are: 
3 2 1 1 2 3 3 3 3 0 .  Hence in the first round of CONTENT-BASED, we partition RD as 
follows: 
8 4]2 1 2 418 4]8 4 .  Then we apply CONTENT-BASED procedure again to get: 
8 4]2 112 418 418 4 ,  as the final partitioning of RD. 

L e m m a  1.1 (the Block-partitioning Lemma): The above partitioning procedure divides 
RD into blocks of size 2 or 3. 

Proof :  The Lemma follows from known facts about the deterministic coin tossing tech- 
nique . 

L e m m a  1.2 (the Consistency Lemma): Let RD be a substring of R in which no two 
successive characters are identical, and let R b be another substring of R which is identical 
with RD. The CONTENT-BASED procedure partitions RD and Rb so that all but (at most) 
log* n + 1 blocks in the right margin and (at most) log" n + 1 blocks in the left margin are 
identical. 

Proof :  The lemma follows by a simple induction on the recursive call of CONTENT- 
BASED on RD and Rb. Designating a character as a local minima in call number p (which 
determines the location of a block divider) depends on at most 2p + 3 neighboring characters 
to its left and 2p + 3 neighboring characters to its right and we only have log* n successive 
recursive calls for CONTENT-BASED. 

Next, we proceed to consider a substring of a single repeated character Rn = (rj+1 = 
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. . . .  r~+k) which cannot be further extended. That is, rj :~ rj+l = rj+2 . . . .  rj+k :~ rj+k+l. 

We describe procedure LENGTH-BASED for obtaining a block-partitioning of RR in Ap- 
pendix 1. By applying these procedures one after another, we obtain a complete partitioning 
of R. 

Now, we can attach labels to blocks preserving label-consistency, and finish the iteration. 

Each block is labeled with a number between 1 and m to satisfy label-consistency. This 
can be done in a CRCW PRAM in O(1) time with O(rn) work in two substeps. In the 
first substep we attach labels to all blocks of size 2, as well as to the first two characters 
of all blocks of size 3. This is done using an rn • m array L. For each such two-character 
substring /3", where 1 < i ,j  < m, the location of i is entered into entry L(i,j).  This is 
similar to [AILSV88]. In the second substep we attach labels to all block of size 3. For 
each three-character substring ijk, we obtain its label by applying the first substep to fk  
where f denotes the label of ij as computed in the first substep. The space complexity is 
O(m2). This can be reduced to O(ml+r for any fixed e > 0, as in [AILSV88]. Getting 
linear space using hashing (and thereby entering randomization), as suggested in [MV91], is 
also a possibility. 

An example for block partitioning and labeling is given in Figure 3. 

s(o): o oi, ,Io olo o o[o ol, olo 

S(1): 1 3 6 [ 8  10 8 1 2  4 6 [ 8  8 1 2 5  

S(Z): 1 I 5 8 11 113 

Figure 3: Block division and labeling for successive iterations 

2 .3  S e c o n d  S t a g e  

Before starting to describe the Second Stage, we mention the issues which will be sup- 
pressed in this presentation: (1) Data structures for representing the suffix tree and keeping 
the labels of substrings. (2) Processor allocation issues. (3) The case of substrings of a re- 
peated character; so, for following our presentation the reader should assume that we never 
get two successive identical characters in any of the S(k) sequences (for k = 1,2 . . . .  ,). 

Each iteration of the first stage provides a partition of the string into blocks and assigns 
labels to these blocks, the partitions in the first stage into k-substrings and the k-labels 
provided some limited similarities among substrings, as characterized by Lemma 1.2. For 
the construction of suffix trees later, it will be helpful to first develop another system of 
substrings of S (instead of the k-substrings) called cores, and label them with core names.  

Any k-substring Sk induces another substring of the input which is called a k-core. Since 
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Sk is a substring of its k-core we say that Sk spans  its k-core. An example of a core is given 
in Figure 4. 

~, .~ . :  ~ 1 , 3 o 1 . , I o o l o o o l o o l 2 1 h o l  D 

2-1abels: 

Figure 4: An example of a core for S in Fig.3; for illustration purposes, assume 21og*n + 
3 = 2 (which is not possible) 

Given a substring Sk, we show how to e x t e n d  it to the left and to the right to obtain 
a k-core. Sk is in the middle. To its left there will be 21og*n 4- 3 strings which are 
(k - 1)-substrings. To their left there will be will be again 21og*n 4- 3 strings which are 
(k - 2)-substrings, and so on till finally there will be 2log* n + 3 which are (0)-substrings 
(they are, in fact, singletons). Finally, a k-core has also a symmetric "staircase" to the right 
of Sk. So, a k-core is a "double staircase" as illustrated in Figure 5. 

k+l-label: 
k-labels: 
k-l-labels: I!i:i]i::~:p: :] , 210g a§ 21o~ n §  Ii)~::1::::i]:~ :~: ] 

e, 

Figure 5: A k-substring is extended by 2log" n + 3  , k -  1-substrings followed by 2log* n + 3 ,  
k - 2-substrings... towards both left and right to obtain a k-core 

The suffix (of the original pattern) which begins at the leftmost character of a k-core is 
called the suffix of t h a t  core,  and is referred to as a k-suffix. (Comment: Each (k 4- 1) 
suffix is also a k-suffix. In other words, the suffix of every (k 4- 1)-core is 3uffix of a k-core, 
since the leftmost character of the (k + 1)-core is also the leftmost character of the k-core. 

STEP 2.1 Corresponding to each iteration k = 1 ,2 , . . .  of the first stage,  do the 
following. For each k-substring, compute the k-core it spans and label each such core with 
a core name, which is called a k -name.  Each k-core is actually a concatenation (with 
overlaps) of 4 log* n + 7, or 4 log* n + 6, (k - 1)-cores; and the name of the k-core is derived 
from the names of these (k - 1)-cores. A key point in deriving the k-names is that this is 
done cons i s t en t ly ;  that is, if the k - 1-names form an identical sequence elsewhere then 
both k-cores will get the same k-name. 

STEP 2.2 The suffix tree is constructed iteratively. In iteration k of the Second Stage,  
the suffix tree T(k) of k-cores  us ing  k - n a m e s  is built. This suffix tree has limited res- 
olutlon, as some possible identical prefixes between two (k + 1)-cores cannot be precisely 
expressed with (k 4. 1)-names. I t e r a t i o n  k bu i lds  T(k) f rom T(k 4- 1) by i m p r o v i n g  
the  r e so lu t ion  w i th  a m o r e  dense  se t  of  cores which are  shor te r .  Note that the 
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iterations are numbered backwards, where the final iteration (which is iteration 1) gives the 
desired suffix tree. 

T h e  m a i n  ideas  in  t h e  Second  Stage  We need to do several things in order to build 
T(k) from T(k + 1). 

1. G e t  t r e e  T(k)o. This is still the suffix tree of the (k + 1)-suffixes (as T(k + 1)), but 
it uses k-names. Procedure REFINE will derive tree T(k)o from tree T(k + 1). 

Procedure REFINE will work as follows. Some (k + 1)-cores represented in T(k + 1) 
are replaced with a concatenation (with overlaps) of the 4 log" n + 9, or 4 log" n + 8, k-cores 
that form them. In parallel for every edge of T(k + 1) advance step-by-step through its first 
4 log* n + 8 (or 4 log* n + 7) k-cores, merging identical names into a single edge. 

O b s e r v a t i o n :  The common prefixes of k-cores between any two sibling edges in T(k + 1) 
can not be longer than 4 log* n + 8 (or 4 log* n + 7) as the definition of the k + 1-core implies; 
hence the procedure REFINE will discover all similarities between k + 1-cores in terms of 
k-cores in at most 4 log* n + 8 steps. 

2. G e t  t r ee  T(k)l. For each (k + 1)-core do the following. The (k + 1)-core is spanned 
by some (k + 1)-substring Sk+l. To the left of Sk+1, there will be 2log* n + 3 strings which 
are k-substrings. Consider the next k-substring. An example is given in Figure 6. Pick the 

k+l-label: ~,,k,0~,g [Uiiii~i~ii~i~iii!iiii~i] 
k-l-labels:k'labels: ~iiiiiiiiiiiiiiiiii ~i~ii?,~ii~i~ii~i~?~ [~iiiiiiiiiiiiiiiiil~iiiiiiiiiiiiiiiiiliiiiiiiiiN210g, n+3 [iiiiiiiiIiiii~;iiM 

• 210g,n+3 210s~3 ,.  

Figure 6: An illustration of the next k-substring of a k + 1-core 

k-core that it spans. Given all the k-cores that were picked, we build the suffix tree of their 
suffixes using k-names and denote it T(k)l. This is done as follows. Divide the k-cores into 
equivalence classes, and let us focus on one of these equivalence classes, to be denoted Q. In 
T(k)l, the suffixes of the cores in Q will be represented, as follows. From the root, there will 
be an outgoing edge labeled with the common k-name of Q, which will lead to a node. The 
subtree rooted at this node will have a leaf for each suffix having the core-name of Q as its 
prefix. It can be readily observed that each of these suffixes corresponds to some suffix (and 
a leaf) of T(k)l. We will apply procedure CONTRACT below to T(k)o to include only these 
leaves and only those internal nodes which split into two (or more) paths in T(k)o leading 
from the root to two (or more) of these leaves. 

Procedure CONTRACT(T, sl, s2,..., s,~) 
Input: A rooted tree T(k)o. For each internal node of the tree, its children, whose number is 
denoted by nk+l, are given in an array of size a. Assume that each node v has its distance 
from the root, denoted level(v). We also assume that tree T(k)o has been preprocessed so 
that a query requesting the lowest common ancestor of any pair of nodes in T(k)o can be 
processed in constant time ([BV88], [SV88]). The input also includes sl,  s2 ..... , sin, a subset 
of the leaves of T, given in the same order as they appear in T. 
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Output: a contracted version of T(k)o with the leaves sl, s2, . . . ,  s,,. 

3. Get  t ree  T(k)2. Consider the k-substrings whose k-cores were picked for T(k)x above. 
Consider the next k-substring. Pick the k-core that it spans, unless it is a suffix of some 
(k + 1)-core. Given all the k-cores that were picked, we build the suffix tree of their suffixes 
using k-names and denote it T(k)2. This is done using T(k)x similar to the construction of 
T(k)x using T(k)o. 

4. Use procedure MERGE to merge the three trees T(k)o, T(k)x, and T(k)2 into T(k), 
which is the suffix tree of the suffixes of all k-cores, using k-names. Procedure MERGE 
works in 41og*n + 10 rounds. Starting simultaneously from the roots of T(k)o, T(k)l, and 
T(k)2 it advances step-by-step through the first 4log* n + 10 k-names in each of them, 
merging identical names into a single edge. By the first 41og*n + 10 k-names in each 
tree, we mean exploring in each tree all the paths starting from the root and in each path 
consider the first 4 log* n + 10 k-names. 

Perhaps the most  in teres t ing observation in this  paper  is that this gives the desired 
T(k). This is implied by the following. 

Observat ion.  Take two k-suffixes that come from two different trees among T(k)0, T(k)~, 
and T(k)2. Then, they can share a prefix of at most 4 log* n + 10 k-cores. 

Proof  (for k ___ 1 only). This is implied by Lemma 1.2 as follows. Assume that the 
common prefix of two k-suffixes that come from two trees among T(k)0, T(k)l, and T(k)2, 
is longer than 4 log*n + 10 k-cores. Take the first such 4 log*n + 10 k-cores, and 
focus on the chain of the 41og*n + 10 k-substrings that span them.-They are identical 
in the two k-suffixes. By Lemma 1.2, the (k + 1)-substrings that cover (well over log* n of 
the) k-substrings in the middle section of this chain axe also identical. Finally, consider the 
leftmost full (k + 1)-cores in each of the k-suffixes. It is not hard to see that the (k + 1)-suffix 
of each of these (k + 1)-cores hits the two k-suffixes at the the same distance (which is 0, 1, 
or 2) from their leftmost k-core. Therefore, both k-suffixes belong to the same tree among 
T(k)o, T(k)a, and T(k)2. The proof for k = 0 is similar; actually, it becomes an important 
ingredient in proving the correctness of our whole algorithm. 
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A p p e n d i x  1: Procedure LENGTH-BASED 

We tentatively put a block divider to the (immediate) right of rj+k and to the left of rj+l, 
thereby separating the block partition of rj+l . . .  rj+k from its surroundings. (Later, we may 
remove the tentative dividers put above if we find out that there is a divider to the left of rj 
or to the right of rj+~+l.) 

We break into several cases depending on the remainder of k modula 4. 
Case 1: k is an even number. Put block dividers to the right of each of r j+2,r j+4, . . .  ,rj+k. 
Case g: k - 1 is divisible by 4. The middle element of RR is rj+(k+l)/2. Put block dividers to 
the right of rj+2, r j+4 , . . . ,  rj+(k-~)12 and ri+(k+5)/2, ri+(k+9)12,..., rj+~-2; so that the middle 
element is in a block of size 3 and all other blocks are of size 2. 
Case 3." k + l  is divisible by 4. Put block dividers to the right of rj+2, r j+4 , . . . ,  rj+(k-3)/2 and 
rj+(k+z)12, rj+(k+r)/2,.. . ,  rj+k-2; so that again the middle element is in a block of size 3 and 
all other blocks are of size 2. 

Procedure LENGTH-BASED actually continues to process RR in iterations till it reduces 
to a single label. In each of the subsequent iterations the reduced length of RR at the time 
will be treated according to the case analysis above; this is done in spite of the fact that a 
middle label may be different than other labels. 

Example Let R . . . .  10000000002..., the procedure LENGTH-BASED starts from 
the beginning and ending location of substring of 0s and partitions R accordingly (Case2 
applies): 
. . .  11OOlOOlOOOlOOl2 . . .  

This ends procedure LENGTH-BASED. 


