
On a parallel-algorithms method for string
matching problems (overview)

Suleyman Cenk Sahinalp * Uzi Vishkin t

A b s t r a c t

Suffix trees are the main data-structure in string matching algorithmics. There
are several serial algorithms for suffix tree construction which run in linear time, but
the number of operations in the only parallel algorithm available, due to Apostolico,
Iliopoulos, Landau, Schieber and Vishkin, is proportional to nlogn. The algorithm
is based on labeling substrings, similar to a classical serial algorithm, with the same
operations bound, by Karp, Miller and Rosenberg. We show how to break symmetries
that occur in the process of assigning labels using the Deterministic Coin Tossing
(DCT) technique, and thereby reduce the number of labeled substrings to linear.

*Department of Computer Science, University of Maryland at College Park
t University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742; and Dept.

of Computer Science, Tel Aviv University, Tel Aviv, Israel; Partially supported by NSF grants CCR-8906949
and CCR-9111348.

23

1 I n t r o d u c t i o n

Suffix trees are apparently the single most important data-structure in the area of string
matching.

We present a parallel method for constructing the suffix tree T of a string S = sl .. �9 sn
of n symbols, with sn being a special symbol $ that appears nowhere else in S. We use A to

denote the alphabe$ of S. The suffix tree T associated with S is a rooted tree with n leaves
such that:

(1) Each path from the root to a leaf of T represents a different suffix of S.

(2) Each edge of T represents a nonempty substring of S.

(3) Each nonleaf node of T, except the root, must have at least two children.

(4) The substrings represented by two sibling edges must begin with different characters.

An example of a suffix tree is given in Figure 1.

suffix 1
p suffix 2

i ~ suff'~ 4 suffix 5

S : 0 1 0 1 $

zufflx I suffix 3 suffix 5 suffix 2 sufl-~x 4

Figure 1: Suffix tree T of string S -- 0 1 0 1 $

Serial algorithms for suffix tree construction were given in [KMR72], [We73], and [Mc76].
The two latter algorithms achieve a linear running time for an alphabet whose size is constant.

A parallel algorithm was given in [AILSV88].

A S y m m e t r y B r e a k i n g Cha l l enge : As in the algorithm of [KMR72] work complexity
of the above mentioned parallel algorithm is O(nlogn). The approach of [KMR72] and
[AILSV88] does not lend itself to linear work for the following reason: As these algorithms
progress, they label all n - 1 substrings of size 2, then all n - 3 substrings of size 4, and in
general all n - 2 i + 1 substrings of size 2 i (1 < i _< log n). This results in a number of labels
which is proportional to n log n and this dictates the work complexity. The extra logarithmic
factor in the label-count is due to the increasing redundance among these substrings (because
of the overlaps), as they become longer. The problem is that there has been no consistent
way for selecting only one among a subset of overlapping substrings, since they all "look-
alike". The main new idea of this paper is in introducing a solution to this symmetry breaking

24

problem. Our most interest ing concrete result is in being able to build a suffix tree using
only a linear number of labels.

The general area of string matching has been enriched by parallel methods that enabled
new serial algorithms as in this paper. Previous examples include [Ga85], [Vi85], and [Vi91].
The new method is also relevant for sequence analysis in compressed data, since it allows
for consistent compression of data. This can be done in the context of parallel or serial
algorithms. Applications of the new method for data compression will be discussed in the
full version.

The method described in this paper leads to several incomparable complexity results as
described in [SV93]. We quote here only one which can be derived with reasonable effort
from our description. For an alphabet whose size is polynomial in n, the method gives an
O(nlog* n) work algorithms and O(n ~) time for any constant 0 < e < 1.

2 T h e A l g o r i t h m

2.1 High-level Description

The algorithm works in two stages. In the first stage we attach labels to various substrings
of S, recognizing some identities. This is done in iterations. In iteration 1, S is partitioned
into blocks of size 2 or 3 characters. Each block is labeled with a number between 1 and n,
in a way which satisfies the following two consis tency properties:

Par t i t ion-cons is tency (we state this property informally) Let Xi be a "long enough"
substring of S (starting) at location i and let Xj be a substring at location j , which is equal
to Xi; then, with the exception of some margins, Xi and Xj will be partitioned in the same
way.

Label-consistei-~cy All blocks consisting of the same string of characters will get the same
label.

An example of consistent partitioning and consistent labeling is given in Figure 2.

So, iteration 1 "shrinks" S = S(0), into a new string S(1), reducing its length by a factor
of at least two. Subsequent iterations apply the same procedure. Iteration i, i = 2,3, . . .
shrinks string S(i - 1) into string S(i) satisfying similar partition-consistency and label-
consistency properties. The size of strings S(i) will be at most n/2 i.

The second stage is devoted to constructing the suffix tree of S in iterations. The input
for the last iteration is T(1), which is the suffix tree of (some kind of) labels which are derived
from S(1). The last iteration constructs the suffix tree of S(0) = S. The i'th-prior-to-the-
last iteration constructs the suffix tree T(i) (the suffix tree of labels derived from S(i)), by
using T (/ + 1) .

25

labels: 1 3 5 7 5 3 5 15

• different blocks and hbetr on the mm'g~u
~y$-..r~

Figure 2: Consistent partitioning, margins, and consistent labeling

2 . 2 F i r s t S t a g e

Let R, a string of characters (of size m), be the input for an iteration of the first s tage.
The iteration partitions R into blocks of size 2 or 3 and labels each block. The problem is
how to do it to satisfy partition-consistency (defined formally later) and label-consistency.
We first describe the main steps of an iteration, and then give a detailed description.

The main steps of an iteration:

Each character ri checks if it is in a substring of length 2, or more, of a single repeated
character. If yes (i.e, ri = r~-i or ri = ri+l), it uses procedure LENGTH-BASED partitioning
(or, procedure LENGTH-BASED for short) for obtaining the block partitioning. If no,
it uses procedure CONTENT-BASED partitioning (or, procedure CONTENT-BASED for
short) for obtaining the block partitioning. (Comment: The case were some character r~ is
not part of a substring of a single repeated character but its previous character rl-a as well
its next character ri+l are both part of such substrings, need a separate treatment which is
suppressed in this presentation.)

The reader is asked to be alert to the following: in order to better convey the main ideas
of our algorithm, we s y s t e m a t i c a l l y suppressed , or de fe r red dealing with.the important
case of substrings consisting of a single repeated character. Dealing with this case is relatively
simpler, and it does not change the essentials of most of the new techniques presented in
this paper.

We start with describing procedure CONTENT-BASED. Consider a substring
RD = r rz, where r i r ri+l, for a ~ i < ft. Namely, we do not allow a sub-
string of the form an. The main idea behind the partitioning procedure below is the use of
the deterministic coin tossing technique of Cole and Vishkin [CV86a] for dividing RD into
blocks.
(Comment. Our use of the deterministic coin tossing technique is novel. We will use it
for deriving "signatures" of strings, mapping similar substrings to the same signature. The
only previous paper which made use of this technique for producing signatures is apparently
by Mehlhorn, Sundar and Uhrig [MSU94]. They limited these signatures to compare full
strings, and did not have to deal either with consistency relative to substrings, or to consider
assigning signatures for strings of repeated characters (i.e. in the form aaa...).)

26

1. Put a divider to the left of r~ and to the right of r~. Each instruction for putting
a divider below should be augmented with the following caveat: we actually put the new
divider only if it does not create a block consisting of a single character.

2. Put a divider to the right of ro+l. Put a divider to the left of r~-l .

3. For each character vl of RD compute tagi , the index of the least significant bit of rl
which is different than ri+l in binary representation. If ri+l does not exist (for now, this can
happen only if i = m), set tag; := 0.

4. For each character r; of Rv , compare tagl with tagi+ a and tagi_a. If any of them does
not exist (for now this can happen if i = 1, or i = m), take the non-existing value to be
0. For all "strict local maxima" (i.e., tagi > tagi+ 1 and tag i > tagi_ 1) put a block divider
between ri and ri+l. For all "weakly local maxima" (i.e. ta9i > tagi+l, and tag i > tagi_l),
put a block divider between rl and ri+~, if bit d i f f i of ri is 1.

5. For each substring of RD, which lies between two dividers, do the following. If the
substring has < 3 elements those elements quit. Otherwise, for each character rl, replace
character ri by tagi, and recursively apply the CONTENT-BASED procedure separately to
each substring (which lies between two dividers).

Example Let R 3 3 8 4 2 1 2 4 8 4 8 4 8 8 Typically, we will apply the
CONTENT-BASED procedure to a longest substring which satisfies the input conditions
which in this case will be:
Ro = 8 4 2 1 2 4 8 4 8 4 . AKer applying steps 1 and 2 we have:
18 4[2 1 2 4 8 418 41 . In binary representation RD becomes:
1000 010010010 0001 0010 0100 1000 010011000 0100 , and the corresponding tag values are:
3 2 1 1 2 3 3 3 3 0 . Hence in the first round of CONTENT-BASED, we partition RD as
follows:
8 4]2 1 2 418 4]8 4 . Then we apply CONTENT-BASED procedure again to get:
8 4]2 112 418 418 4 , as the final partitioning of RD.

L e m m a 1.1 (the Block-partitioning Lemma): The above partitioning procedure divides
RD into blocks of size 2 or 3.

Proof : The Lemma follows from known facts about the deterministic coin tossing tech-
nique .

L e m m a 1.2 (the Consistency Lemma): Let RD be a substring of R in which no two
successive characters are identical, and let R b be another substring of R which is identical
with RD. The CONTENT-BASED procedure partitions RD and Rb so that all but (at most)
log* n + 1 blocks in the right margin and (at most) log" n + 1 blocks in the left margin are
identical.

Proof : The lemma follows by a simple induction on the recursive call of CONTENT-
BASED on RD and Rb. Designating a character as a local minima in call number p (which
determines the location of a block divider) depends on at most 2p + 3 neighboring characters
to its left and 2p + 3 neighboring characters to its right and we only have log* n successive
recursive calls for CONTENT-BASED.

Next, we proceed to consider a substring of a single repeated character Rn = (rj+1 =

27

. . . . r~+k) which cannot be further extended. That is, rj :~ rj+l = rj+2 rj+k :~ rj+k+l.

We describe procedure LENGTH-BASED for obtaining a block-partitioning of RR in Ap-
pendix 1. By applying these procedures one after another, we obtain a complete partitioning
of R.

Now, we can attach labels to blocks preserving label-consistency, and finish the iteration.

Each block is labeled with a number between 1 and m to satisfy label-consistency. This
can be done in a CRCW PRAM in O(1) time with O(rn) work in two substeps. In the
first substep we attach labels to all blocks of size 2, as well as to the first two characters
of all blocks of size 3. This is done using an rn • m array L. For each such two-character
substring /3", where 1 < i ,j < m, the location of i is entered into entry L(i,j). This is
similar to [AILSV88]. In the second substep we attach labels to all block of size 3. For
each three-character substring ijk, we obtain its label by applying the first substep to fk
where f denotes the label of ij as computed in the first substep. The space complexity is
O(m2). This can be reduced to O(ml+r for any fixed e > 0, as in [AILSV88]. Getting
linear space using hashing (and thereby entering randomization), as suggested in [MV91], is
also a possibility.

An example for block partitioning and labeling is given in Figure 3.

s(o): o oi, ,Io olo o o[o ol, olo

S(1): 1 3 6 [8 10 8 1 2 4 6 [8 8 1 2 5

S(Z): 1 I 5 8 11 113

Figure 3: Block division and labeling for successive iterations

2 .3 S e c o n d S t a g e

Before starting to describe the Second Stage, we mention the issues which will be sup-
pressed in this presentation: (1) Data structures for representing the suffix tree and keeping
the labels of substrings. (2) Processor allocation issues. (3) The case of substrings of a re-
peated character; so, for following our presentation the reader should assume that we never
get two successive identical characters in any of the S(k) sequences (for k = 1,2 ,).

Each iteration of the first stage provides a partition of the string into blocks and assigns
labels to these blocks, the partitions in the first stage into k-substrings and the k-labels
provided some limited similarities among substrings, as characterized by Lemma 1.2. For
the construction of suffix trees later, it will be helpful to first develop another system of
substrings of S (instead of the k-substrings) called cores, and label them with core names.

Any k-substring Sk induces another substring of the input which is called a k-core. Since

28

Sk is a substring of its k-core we say that Sk spans its k-core. An example of a core is given
in Figure 4.

~, .~ . : ~ 1 , 3 o 1 . , I o o l o o o l o o l 2 1 h o l D

2-1abels:

Figure 4: An example of a core for S in Fig.3; for illustration purposes, assume 21og*n +
3 = 2 (which is not possible)

Given a substring Sk, we show how to e x t e n d it to the left and to the right to obtain
a k-core. Sk is in the middle. To its left there will be 21og*n 4- 3 strings which are
(k - 1)-substrings. To their left there will be will be again 21og*n 4- 3 strings which are
(k - 2)-substrings, and so on till finally there will be 2log* n + 3 which are (0)-substrings
(they are, in fact, singletons). Finally, a k-core has also a symmetric "staircase" to the right
of Sk. So, a k-core is a "double staircase" as illustrated in Figure 5.

k+l-label:
k-labels:
k-l-labels: I!i:i]i::~:p: :] , 210g a§ 21o~ n § Ii)~::1::::i]:~ :~:]

e,

Figure 5: A k-substring is extended by 2log" n + 3 , k - 1-substrings followed by 2log* n + 3 ,
k - 2-substrings... towards both left and right to obtain a k-core

The suffix (of the original pattern) which begins at the leftmost character of a k-core is
called the suffix of t h a t core, and is referred to as a k-suffix. (Comment: Each (k 4- 1)
suffix is also a k-suffix. In other words, the suffix of every (k 4- 1)-core is 3uffix of a k-core,
since the leftmost character of the (k + 1)-core is also the leftmost character of the k-core.

STEP 2.1 Corresponding to each iteration k = 1 ,2 , . . . of the first stage, do the
following. For each k-substring, compute the k-core it spans and label each such core with
a core name, which is called a k -name. Each k-core is actually a concatenation (with
overlaps) of 4 log* n + 7, or 4 log* n + 6, (k - 1)-cores; and the name of the k-core is derived
from the names of these (k - 1)-cores. A key point in deriving the k-names is that this is
done cons i s t en t ly ; that is, if the k - 1-names form an identical sequence elsewhere then
both k-cores will get the same k-name.

STEP 2.2 The suffix tree is constructed iteratively. In iteration k of the Second Stage,
the suffix tree T(k) of k-cores us ing k - n a m e s is built. This suffix tree has limited res-
olutlon, as some possible identical prefixes between two (k + 1)-cores cannot be precisely
expressed with (k 4. 1)-names. I t e r a t i o n k bu i lds T(k) f rom T(k 4- 1) by i m p r o v i n g
the r e so lu t ion w i th a m o r e dense se t of cores which are shor te r . Note that the

29

iterations are numbered backwards, where the final iteration (which is iteration 1) gives the
desired suffix tree.

T h e m a i n ideas in t h e Second Stage We need to do several things in order to build
T(k) from T(k + 1).

1. G e t t r e e T(k)o. This is still the suffix tree of the (k + 1)-suffixes (as T(k + 1)), but
it uses k-names. Procedure REFINE will derive tree T(k)o from tree T(k + 1).

Procedure REFINE will work as follows. Some (k + 1)-cores represented in T(k + 1)
are replaced with a concatenation (with overlaps) of the 4 log" n + 9, or 4 log" n + 8, k-cores
that form them. In parallel for every edge of T(k + 1) advance step-by-step through its first
4 log* n + 8 (or 4 log* n + 7) k-cores, merging identical names into a single edge.

O b s e r v a t i o n : The common prefixes of k-cores between any two sibling edges in T(k + 1)
can not be longer than 4 log* n + 8 (or 4 log* n + 7) as the definition of the k + 1-core implies;
hence the procedure REFINE will discover all similarities between k + 1-cores in terms of
k-cores in at most 4 log* n + 8 steps.

2. G e t t r ee T(k)l. For each (k + 1)-core do the following. The (k + 1)-core is spanned
by some (k + 1)-substring Sk+l. To the left of Sk+1, there will be 2log* n + 3 strings which
are k-substrings. Consider the next k-substring. An example is given in Figure 6. Pick the

k+l-label: ~,,k,0~,g [Uiiii~i~ii~i~iii!iiii~i]
k-l-labels:k'labels: ~iiiiiiiiiiiiiiiiii ~i~ii?,~ii~i~ii~i~?~ [~iiiiiiiiiiiiiiiiil~iiiiiiiiiiiiiiiiiliiiiiiiiiN210g, n+3 [iiiiiiiiIiiii~;iiM

• 210g,n+3 210s~3 ,.

Figure 6: An illustration of the next k-substring of a k + 1-core

k-core that it spans. Given all the k-cores that were picked, we build the suffix tree of their
suffixes using k-names and denote it T(k)l. This is done as follows. Divide the k-cores into
equivalence classes, and let us focus on one of these equivalence classes, to be denoted Q. In
T(k)l, the suffixes of the cores in Q will be represented, as follows. From the root, there will
be an outgoing edge labeled with the common k-name of Q, which will lead to a node. The
subtree rooted at this node will have a leaf for each suffix having the core-name of Q as its
prefix. It can be readily observed that each of these suffixes corresponds to some suffix (and
a leaf) of T(k)l. We will apply procedure CONTRACT below to T(k)o to include only these
leaves and only those internal nodes which split into two (or more) paths in T(k)o leading
from the root to two (or more) of these leaves.

Procedure CONTRACT(T, sl, s2,..., s,~)
Input: A rooted tree T(k)o. For each internal node of the tree, its children, whose number is
denoted by nk+l, are given in an array of size a. Assume that each node v has its distance
from the root, denoted level(v). We also assume that tree T(k)o has been preprocessed so
that a query requesting the lowest common ancestor of any pair of nodes in T(k)o can be
processed in constant time ([BV88], [SV88]). The input also includes sl, s2 , sin, a subset
of the leaves of T, given in the same order as they appear in T.

30

Output: a contracted version of T(k)o with the leaves sl, s2, . . . , s,,.

3. Get t ree T(k)2. Consider the k-substrings whose k-cores were picked for T(k)x above.
Consider the next k-substring. Pick the k-core that it spans, unless it is a suffix of some
(k + 1)-core. Given all the k-cores that were picked, we build the suffix tree of their suffixes
using k-names and denote it T(k)2. This is done using T(k)x similar to the construction of
T(k)x using T(k)o.

4. Use procedure MERGE to merge the three trees T(k)o, T(k)x, and T(k)2 into T(k),
which is the suffix tree of the suffixes of all k-cores, using k-names. Procedure MERGE
works in 41og*n + 10 rounds. Starting simultaneously from the roots of T(k)o, T(k)l, and
T(k)2 it advances step-by-step through the first 4log* n + 10 k-names in each of them,
merging identical names into a single edge. By the first 41og*n + 10 k-names in each
tree, we mean exploring in each tree all the paths starting from the root and in each path
consider the first 4 log* n + 10 k-names.

Perhaps the most in teres t ing observation in this paper is that this gives the desired
T(k). This is implied by the following.

Observat ion. Take two k-suffixes that come from two different trees among T(k)0, T(k)~,
and T(k)2. Then, they can share a prefix of at most 4 log* n + 10 k-cores.

Proof (for k ___ 1 only). This is implied by Lemma 1.2 as follows. Assume that the
common prefix of two k-suffixes that come from two trees among T(k)0, T(k)l, and T(k)2,
is longer than 4 log*n + 10 k-cores. Take the first such 4 log*n + 10 k-cores, and
focus on the chain of the 41og*n + 10 k-substrings that span them.-They are identical
in the two k-suffixes. By Lemma 1.2, the (k + 1)-substrings that cover (well over log* n of
the) k-substrings in the middle section of this chain axe also identical. Finally, consider the
leftmost full (k + 1)-cores in each of the k-suffixes. It is not hard to see that the (k + 1)-suffix
of each of these (k + 1)-cores hits the two k-suffixes at the the same distance (which is 0, 1,
or 2) from their leftmost k-core. Therefore, both k-suffixes belong to the same tree among
T(k)o, T(k)a, and T(k)2. The proof for k = 0 is similar; actually, it becomes an important
ingredient in proving the correctness of our whole algorithm.

R e f e r e n c e s

[AILSV88] A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin, Parallel
Construction of a Suffix Tree with Applications, In Algorithraica, 3: 347-365,
1988.

[BV88] O. Berkman, and U. Vishkin, Recursive star-tree parallel data-structure, In
SIAM J. Computing, 22,2: 221-242, 1993.

[BDHPRS89] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasaxt, T. Radzik, and S. Saxena,
Improved Deterministic Parallel Integer Sorting, In Information and Computa-
tion, 94: 29-47, 1991.

3]

[BLMPSZ91] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J Smith,
M. Zagha, A Comparison of Sorting Algorithms for the Connection Machine
CM-2, In Proceedings of the 3 r~ Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 3-16, 1991.

[CV86a] R. Cole, and U. Vishkin, Deterministic Coin Tossing with Applications to Parallel
List Ranking, In Information and Control, 70: 32-53, 1986.

[CV86b] R. Cole, and U. Vishkin, Deterministic Coin Tossing and Accelerating Cascades:
Micro and Macro Techniques for Designing Parallel Algorithms, In Proceedings of
the 18 th Annual ACM Symposium on the Theory of Computing, pages 206-219,
1986.

Z. Galil, Optimal Parallel Algorithms for String Matching, In Information and
Control, 67: 144-157, 1985.

R. M. Karp, R. E. Miller, and A. L. Rosenberg, Rapid Identification of Repeated
Patterns in Strings, Trees, and Arrays, In Proceedings of the 4 th Annual ACM
Symposium on the Theory of Computing, pages 125-136, 1972.

Y. Matias, and U. Vishkin, On Parallel Hashing and Integer Sorting, In Journal
of Algorithms, 12,4: 573-606, 1991.

E. M. McCreight, A Space - Economical Suffix Tree Construction Algorithm, In
Journal of the ACM, 23: 262-272, 1976.

K. Mehlhorn, R. Sundar, and C. Uhrig, Maintaining Dynamic Sequences under
Equality - Tests in Polylogarithmic Time, to appear In Proceedings of the 5 th

Annual ACM- SlAM Symposium on Discrete Algorithms, 1994.

S. Rajasekaran, and J. H. Reif, Optimal and Sublogarithmic Time Randomized
Parallel Sorting Algorithms, In SIAM Journal of Computing, 18: 594-607, 1989.

S. C. Sahinalp, and U. Vishkin, Symmetry Breaking in Suffix Tree Construction,
In preparation

B. Schieber, and U. Vishkin, On Finding Lowest Common Ancestors: Simplifi-
cation and Parallelization, In SlAM Journal of Computing, 17: 1253-1262, 1988.

U. Vishkin, Optimal Parallel Pattern Matching in Strings, In Information and
Control, 67: 91-113, 1985.

U. Vishkin, Deterministic Sampling - A New Technique for Fast Pattern Match-
ing, In SIAM Journal of Computing, 20: 22-40, 1991.

P. Weiner, Linear Pattern Matching Algorithm, In Proceedings of the 14 th IEEE
Symposium on Switching and Automata Theory, pages 1-11, 1973.

[Ga85]

[KMR72]

[MV91]

[Mc761

[MSU941

[RR89]

[SV931

[SV88]

[Vi85]

[Vi91]

[We73]

32

A p p e n d i x 1: Procedure LENGTH-BASED

We tentatively put a block divider to the (immediate) right of rj+k and to the left of rj+l,
thereby separating the block partition of rj+l . . . rj+k from its surroundings. (Later, we may
remove the tentative dividers put above if we find out that there is a divider to the left of rj
or to the right of rj+~+l.)

We break into several cases depending on the remainder of k modula 4.
Case 1: k is an even number. Put block dividers to the right of each of r j+2,r j+4, . . . ,rj+k.
Case g: k - 1 is divisible by 4. The middle element of RR is rj+(k+l)/2. Put block dividers to
the right of rj+2, r j+4 , . . . , rj+(k-~)12 and ri+(k+5)/2, ri+(k+9)12,..., rj+~-2; so that the middle
element is in a block of size 3 and all other blocks are of size 2.
Case 3." k + l is divisible by 4. Put block dividers to the right of rj+2, r j+4 , . . . , rj+(k-3)/2 and
rj+(k+z)12, rj+(k+r)/2,.. . , rj+k-2; so that again the middle element is in a block of size 3 and
all other blocks are of size 2.

Procedure LENGTH-BASED actually continues to process RR in iterations till it reduces
to a single label. In each of the subsequent iterations the reduced length of RR at the time
will be treated according to the case analysis above; this is done in spite of the fact that a
middle label may be different than other labels.

Example Let R 10000000002..., the procedure LENGTH-BASED starts from
the beginning and ending location of substring of 0s and partitions R accordingly (Case2
applies):
. . . 11OOlOOlOOOlOOl2 . . .

This ends procedure LENGTH-BASED.

