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Abstract 

We study sequence nearest neighbors (SNN). Let D be 
a database o fn  sequences; we would like topreprocess 
D so that given any on-line query sequence Q we can 
quickly find a sequence S in D for which d( S, Q) <_ 
d(S, T)  for any other sequence T in D. Here d(S, Q) 
denotes the distance between sequences S and Q, de- 
fined to be the minimum number of  edit operations needed 
to transform one to another (all edit operations will be 
reversible so that d(S, T )  = d(T, S) for any two se- 
quences T and S). These operations correspond to the 
notion of  similarity between sequences that we wish to 
capture in a given application. Natural edit operations 
include character edits (inserts, replacements, deletes 
etc), block edits (moves, copies, deletes, reversals) and 
block numerical transformations (scaling by an additive 
or a multiplicative constant). The SNN problem arises 
in many applications. 

We present the first known efficient algorithm for 
"approximate'" nearest neighbor search for sequences 
with preprocessing time and space polynomial in size of  
D and query time near-linear in size of  Q. We assume 
the distance d( S, T)  between two sequences S and T is 
the minimum number of  character edits and block oper- 
ations needed to transform one to the other. The approx- 
imation factor we achieve is O(logg(log* g)2), where g 
is the size of the longest sequence in D. In addition, 
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we also give an algorithm for exactly computing the dis- 
tance between two sequences when edit operations of  
the type character replacements and block reversals are 
allowed. The time and space requirements of  the algo- 
rithm is near linear; previously known approaches take 
at least quadratic time. 

1 Introduction 

The sequence nearest neighbor (SNN) problem is as fol- 
lows. We are given a database D of sequences for pre- 
processing; given an on-line query sequence Q, our goal 
is to return a sequence S in D whose distance d(S, Q) 
to Q is no more than that of  any other sequence T to 
Q. Distance between two sequences is defined to be 
the minimum number of edit operations needed to trans- 
form one to another (all edit operations of interest are 
reversible so that d(S, T)  = d(T, S) for any two se- 
quences T and S). The nature of SNN problem depends 
on the edit operation that is permitted which corresponds 
to the notion of similarity between sequences that we 
wish to capture for an application. Natural edit opera- 
tions include character edits (inserts, replacements, deletes 
etc), block edits (moves, copies, deletes, reversals) and 
block numerical transformations (scaling by an additive 
or a multiplicative constant). The SNN problem arises in 
many applications and it is a "grand problem" of Com- 
binatorial Pattern Matching. 

Let the number of sequences in D be n and the max- 
imum length of the sequences in D be L Under nearly 
any set of  edit operations, all known algorithms for the 
SNN problem face the "dimensionality bottleneck" in 
the worst case, that is, they cannot use subexponential 
(o(2e)) preprocessing cost and yet obtain query time bounds 
better than that obtained by comparing the query se- 
quence to each in the database (say, sublinear - o(ng) 

- time). Overcoming this d!mensionality bottleneck un- 
der nontrivial edit operations is an important open issue 
in Combinatorial Pattern Matching. 
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In this paper, we make some limited progress to- 
wards solving this problem - we present the first known 
efficient algorithm for "approximate" nearest neighbor 
search with preprocessing time and space polynomial 
in size of D and query time near-linear in size of Q. 
Our result holds for the block edit distance d(S, T) be- 
tween two sequences S and T defined to be the min- 
imum number of character edits and block operations 
needed to transform one to the other. Another contri- 
bution of the paper is an algorithm to exactly compute 
the distance between two sequences under a block oper- 
ation, namely, reversals. We now describe our results in 
more detail. 

Context. Significant progress has been made on the 
nearest neighbor problem (NN) recently; however, most 
of those results are for vector spaces, t That is, the ob- 
jects are vectors and the distance between two vectors 
is defined by a norm (such as Euclidean, or L~o, etc) 
of their difference. We refer to these as vector nearest 
neighbor (VNN) problems. While a sequence of length 
£ may be thought of as a £ dimensional vector, SNN 
problems offer distinct challenges. Edit operations al- 
low nontrivial alignments between two sequences (po- 
sition i in one sequence may align with position j ~ i 
in the other for distance computation) while the distance 
functions for vectors allow only the trivial alignment of  
ith position in one vector with that in the other. Nontriv- 
ial alignments pose major technical difficulties. In pres- 
ence of such alignments, even computing the distance 
between two sequences may be expensive (quadratic or 
even NP-hard, depending on the edit operations being 
considered); in contrast, the vector norms can be com- 
puted in time linear in the number of dimensions. 

Distance between two sequences. The distance be- 
tween two sequences is the minimum number of  edit 
operations needed to transform one to another. An im- 
portant technical condition is that the operations must 
be non-overlapping, i.e., no character can be involved in 
more than one edit operation. Some edit operations are 
as follows: 

1. Character edits which includes inserting or delet- 
ing a single character or replacing a single charac- 
ter by another. These are motivated by transcription 
errors in text, bit transmission errors in commu- 
nication channels, or experimental errors in read- 
ing a genomic sequence, etc. These are of classi- 
cal interest, having been studied at least as early as 
60's [Lev66]. 

l An exception is the recent result in [F199] for the Hausdorffmea- 
sure which is not related to SNN problems we study. 

2. Block arrangements which involves moving a block 
(any consecutive set of characters) from one place 
to another; this is a rather natural notion in defin- 
ing similarity of objects (such as in moving a para- 
graph of a text to another location [T84] or moving 
objects around in pen computing [LT96] or intrase- 
quence rearrangements in genomic data [GD91]). 
It also involves copying blocks from one place to 
another within a sequence, or deleting a copy of a 
block that exists elsewhere. These operations are 
motivated by data compression. 

3. Block reversals which involves reversing an entire 
block; this is a common operation in multimedia 
data such as music scales [SK83], or in assembling 
genomic sequences [G]. 

4. Block linear-transformation which involves chang- 
ing each position Q[i] in some block of Q to ~Q[i]+ 

where ~b and x are multiplicative and additive 
scaling constants respectively. This is of  interest 
in financial data analysis where one allows scaling 
effects in tracking similar trends [AL+95]. 

Although these edit operations are motivated from 
many applications, we do not consider the specifics of 
~iny application. Rather, we focus on the complexity of 
nearest neighbor search while allowing various edit op- 
erations above. 

Our Contributions. Our first set of results are Monte 
Carlo type algorithms for approximately solving the SNN 
problem. Say $1, . . . ,  Sn is the database D of sequences, 
e = m ~  IS~l and IDI = ~ IS~ I- Our algorithms use 
preprocessing time and space polynomial in tDI and g. 
A query with sequence Q takes time O(IQI polytog(ne)) 
and returns a sequence S in D such that d(S, Q) = 
O(logg(log* £)2)d(T, Q) for any other sequence T in 
D, with high probability (at least 1 - 1 / n ) .  z Here, d(S, QI 
is what we call the block edit distance defined to be the 
minimum number of character edits (insertions, dele- 
tions and replacements) and block operations (moves, 
copies, deletes, reversals) needed to transform S to Q 
(or vice versa). In contrast, for VNN problems, (1 + e) 
[KOR98, IM98] or O(logloge)  [198] approximations 
are known. However, ours is the first result for the SNN 
problem with any non-trivial edit operation (if only char- 
acter replacements are allowed in which case the align- 
ment is trivial, the known results for VNN problem un- 
der the Hamming distance apply to the SNN problem). 

Our second result is on the basic problem of com- 
puting the distance between two sequences with block 

2Given an integer k, l og*k  denotes, r a i n { / >  0 : log  (i) k < 1}, 
where log(i) k = l og ( log ( i - l )  k), and log(°) x = 0. 
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edit operations. If  the distance d(S,T) between two 
sequences S and T is the minimum number of arbitrary 
block moves needed to transform S to T, the problem 
of computing d(S, T) become NP-hard [LT96]. Thus, 
we focus on block reversals only. Since it is not possible 
to transform a given sequence S (e.g., all O's) to every 
other sequence T (e.g., all l ' s )  by block reversals alone, 
d(S, T) is not well defined if we allow only block rever- 
sal operations. The simplest well-defined distance with 
block reversals additionally allows character replacements. 
In this paper, we consider this distance between two se- 
quences, and present an o(Is I  polulog(ISI)) time de- 
terministic algorithm for exactly computing it; the naive 
solution employs dynamic programming and it takes time 
e(ISl2). 

Technical Overview. Algorithms for VNN problems 
work by dimensionality reduction, space partitioning, 
bucketing etc., none of which seems to work directly 
with distance functions involving nontrivial alignments 
such as ours. Our approach for SNN problems trans- 
forms sequences into sparse vectors in very large di- 
mensions. The transformation is inspired by recent re- 
sults on the communication complexity of  exchanging 
documents [CP+00] which used the idea of parsing se- 
quences into "core" subsequences as per [SV96] (rely- 
ing in turn on the "symmetry breaking" technique from 
[CV86]). We develop more general parsing strategies 
here which capture properties of cores involving not only 
equality of subsequences, but also equality under rever- 
sals. 

Map.  We describe the notation in Section 2 and our 
general parsing strategy for sequences in Section 3. In 
Section 4 we show how to solve the SNN problem ap- 
proximately using our parsing. In Section 5, we show 
how to compute the distance between two sequences un- 
der edit operations specified received. In Section 6 we 
discuss open problems. 

2 Preliminaries 

In the rest of the paper we denote sequences by P, Q, R, S.., 
integers and binary numbers by i, j ,  k.. and constants by 
c~,/3, 7... All sequences have characters drawn from al- 
phabet a.  Given a sequence S, let S[i] denote its ith 
character and S[i : j] denote the block extending from 
S[i] to S[j]. We denote by SIIQ the concatenation of 
two sequences S and Q. The reverse of S is the se- 
quence S[ISI],..., S[2], S[1], and is denoted by S ~- . A 
sequence in which all characters are identical is called 
a repeating sequence. We denote by a t, a repeating se- 
quence composed of I repetitions of character a. Sim- 
ilarly, for a given sequence Q, we denote by QZ, a se- 

quence obtained by concatenating l copies of  Q. Here 
are a few standard definitions. A sequence S is called 
periodic with I > 1 repetitions if there exists a block Q 
such that S = QZlIQ- where Q -  is a prefix of  Q; Q 
is called a period of S. The shortest such Q is called 
the period of S; the period of S is the period of all pe- 
riods of S. A sequence S in which S[i] ~ S[i + 1] 
for all i is called a varying sequence. Given sequence 
S, a max-repeating block of S is a repeating sequence 
of at least two characters which can not be further ex- 
tended as a repeating sequence. Following the removal 
of  all max-repeating blocks of  S, we get a number of  se- 
quences which are called the remaining blocks of S. We 
remind readers again that in defining the edit distance 
between two sequences, the edit operations applied to 
one sequence to transform it to the other can not over- 
lap. 

3 Generalized Parsing 

In this section, we partition any given sequence into 
blocks (called cores) using a parsing technique that gen- 
eralizes the Locally Consistent Parsing (LCP) technique 
of Sahinalp and Vishkin [SV96]. Many of the properties 
of  LCP will also hold for our generalized parsing, but 
our parsing will have additional properties not only in 
terms of the equality of  cores, but also with their rever- 
sals. We call the resultant parsing Symmetric LCP and 
obtain Symmetric Cores. 

3.1 Symmetric LCP 

Given a varying sequence S (i.e., S[i] ¢ S[i + 1] for 
i = 1 . . .  ISl), symmetric LCP designates at most ISl/2 
and at least IS1/3 (possibly overlapping) blocks of  S as 
core-blocks. The concatenation of these core-blocks (af- 
ter removing their overlaps) gives S with the exception 
of a constant number of  characters on its left and right 
margins. 

Step 1. Mark the leftmost character of S and every 
second (i.e., odd indexed) character to its right, till the 
(log* I~1 + e~)th character for some constant c~ to be de- 
termined later. Similarly mark the rightmost character 
of  S and every second character to its left up to the 
(log* 1~1 + ~) character. 

Step 2. For each character x between the leftmost and 
the rightmost marked characters compute a tag, as fol- 
lows. Let v be the left neighbor of  x and y be the right 
neighbor. Initially assigntago(x) = x. Computetagj(x) 
for 1 _< j _< log* M,  in log* [tr[ iterations as follows. 

Denote by l the index of the least significant bit in 
which tagj+l(x) is different from tagj+l(v), and r that 
between tagj+l(x) and tagj+l(y). Also let l' be the bit 
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value of tagj+l (x) at position I and likewise with r '  (it 
is crucial that we consider the bit value of x). Define 
L = lilt' and R = "li t ' .  Let max(x)  = max{R,  L)  
and rain(x) = min{R, L} Assign 

tagj+l(x) = max(x)llmin(x). 

The tag obtained after the last iteration is simply denoted 
as tag henceforth. 

Step 3. Mark each character whose tag is a local max- 
ima, i.e., is greater than the tags of  both its left and its 
right neighbors. Also, mark each character whose tag 
is a local minima, (i.e., is smaller than the tags of both 
its left and its right neighbors), and which has no neigh- 
bors that have previously been marked. The characters 
marked so far are called theprimary marked characters. 

Step 4. Mark characters between any two successive 
marked characters as equally spaced as possible so that 
no two successive marked characters are more than 3 
apart. This marking is done in a symmetric manner 
walking between the two consecutive marked characters 
from both left and right simultaneously. The characters 
marked here are called the secondary marked charac- 
ters. II 

For each marked character S[i], we designate the 
block S[i-log* I~1-~ : /+ log*  I~1+~] as a core-block. 

Lemma 1 For any j and i, tagj(S[i]) 7k tagj(S[i+ 
1]). 

Proof: Consider any 4 consecutive characters abcd 
where b 5~ c. Let L(b), R(b), L(e) and R(c), be as 
defined earlier. If  min(b) = min(c) (otherwise, we 
are done), then the bit value at the least significant bit 
location implied by rain(b) is identical in both b and c. 
This means that max(b) must be R(b) llr(b) and max(c) 
must be L(e)IIZ(e) and hence max(b) 7~ max(e) since 
R(b) and L(c) must differ in the least significant bit. II 

Therefore, the "sequence" of  tag values after each 
iteration remains a varying one and iteration proceeds 
as usual. Also, at the end of the iterations, the following 
holds. 

Lemma  2 The maximum value of  a tag is a small 
constant o~ which does not depend on S and a. 

Proof: For any j ,  if the number of  bits to repre- 
sent tagj(x) is k, then the number of bits to represent 
tagj+l (x) is 2(log k)+2 .  After log* I~1 iterations k will 
be a small constant (denoted by a henceforth) which can 
not be decreased further. II 

L e m m a  3 l f  a block Q & designated as a core-block, 
then all blocks identical to Q or its reverse are desig- 
nated as core-blocks. 

Proof: Consider the marked location that led to Q[0 : 
IQI - 1] being a core-block, and let that be Q[i]. In the 
first iteration of the tag computation, tag1 (Q[i]), deter- 
mined by character Q[i], its left neighbor and its right 
neighbor. In each of the following iterations, tagj (Q[i]) 
depends on one additional character to the left and one 
additional character to the right. Thus its tag is deter- 
mined only by at most log* Icrl characters to its left and 
log* I~1 characters to its right. Consider any other block 
R that is a reversal of Q. Then R[IQI - i - 1] has the 
same tag values as Q[i] in each iteration until the end, 
and therefore R would be declared a core-block as well. 
(If R were identical to Q, R[i] would play the role of 
R[IQ[- i - 1].) 1 

Following observations have easy proofs. (1) The 
number of core-blocks is at most 1S]/2. (Proof follows 
from the fact that no two adjacent characters may be 
marked owing to the local maxima and local minima re- 
quirement in Step 4). (2) For any given sequence S, ev- 
ery character except possibly the rightmost log* la[ + 
and the leftmost log* I~1 + ~ characters is included in 
at least one core-block. (Proof follows since no two 
primary marked characters are separated by more than 

+ 1, again due to Step 4). 

Remark .  One of the main difference between the stan- 
dard LCP [SV96] and our symmetric LCP lies in Step 2 
(there are other technical differences we will bring out 
explicitly in the final version). In standard LCP, tags are 
computed only from the left neighbor. In doing so, they 
adopted the symmetry-breaking technique of Cole and 
Vishkin [CV86]. Modifying it as we do to consider both 
the left and the right neighbor would mean that we ex- 
ploit the symmetry, as we need to, in order to identify 
subsequences and their reversals by local tag computa- 
tions. I I  

It is easy to see that for a sequence S of alphabet set 
or, symmetric LCP can be executed in time O(ISI log* I~1). 

3.2 Symmetric Core Computation 

Given a sequence S, we show how to designate and label 
some of its blocks as symmetric cores in O(log IsI) it- 
erations. Symmetric LCP is used repeatedly in this pro- 
cess. Essentially, we would like to use symmetric LCP 
recursively; however, there are repeating blocks of  a se- 
quence that complicate the issues. Recall the constant a 
from the previous section. 

Initially, we designate each character of S as a core 
of level-0. In iteration i, we compute the level-i cores of  
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S by using cores of  l e v e l - ( / -  1); although some level-/ 
cores overlap, no level- /core completely covers another. 
We denote by S(0)  the sequence S itself, and by S( i )  
the sequence of  level - /cores  (in the order they appear 
in S). We also denote by or(0) the alphabet a itself, and 
by or(i) the set o f  all core labels at level-/. The cores of  
level - /are  computed as follows. 

Repl icat ive  cores of  level-/. We designate as a core- 
block every max-repeating block R : a r of  S( i  - 1) 
for which r > log* Icr(i - 1)1 4- ~.  The core of  such 
a core-block is the concatenation of  the r l e v e l - ( / -  1) 
cores represented by label a in S( i  - 1). We label this 
core with the three-tuple (a, i - 1, r) .  

We then consider each label x in S ( i  - 1) which 
represents a level-(i - 1) replicative core. Let the la- 
bel o f  such a core C be the three-tuple (a, l, r)  (where 
l _< i - 2 is the level entry and r the length entry). I f  
r >_ (2 i-z - 1)(log* [~r(i - 1)1 + ~)  + 2 i -1 ,  we desig- 
nate this single label as singleton core-block and abuse 
our terminology to call it a max-repeating block. We 
identify its l e v e l - ( / -  1) core as a level- /(replicat ive)  
core with label (a, l, r )  once again. 

Vary ing  cores of  level-/. Given a max-repeating or re- 
maining block R for which IRI < log* I ~ ( i - 1 ) 1 + ~ ,  we 
mark every second label in a symmetric manner walking 
from left end and right end simultaneously. In each left- 
over block O for which IQI > log* [tr(i -- 1)l + a ,  we 
mark the label implied by symmetric LCP from the pre- 
vious section. 

For each marked label x, let y be the leftmost label 
to the right o f  x which is designated as a singleton core- 
block. Similarly, let z be the rightmost label to the left 
o f x  which is designated as a singleton core-block. Also, 
let k denote the number of  labels between x and y and l 
denote the number of  labels between x and z. 

We append the leftmost m in (k  + 1, log* [tr(i - 1)1 + 
cQ labels to the right of  x, and the rightmost min( l  4- 
1, log* l a ( i -  1 ) l + a )  labels to the left o f x .  Such a block 
is called the core-block of  label x. However, we avoid 
designating a core-block for x if  to the left (respectively, 
right) of  x, there are fewer than log* l a ( i -  1) l+  cr labels 
and no singleton core-block. 

For each core-block obtained, we compute its core C 
as follows: (1) I f  the leftmost label is a singleton core- 
block R and its level entry is m,  then C includes the 
rightmost 2 i - m  × (k + 1 - log* Ic~(m)l - ~)  level-m 
cores of  R and the cores of  the labels in the core-block 
of  x. (2) If  the leftmost label is not singleton core-block 
we simply concatenate all the cores in the core-block of  
X.  

Finally we consider each label x which represents a 
l e v e l - ( / -  1) replicative core, but is not designated as 
a singleton core-block. We treat x as if  it is a max- 
repeating block of  S( i  - 1) of  size ICl/2 i-'-1, where 
[C[ is the length entry of  x. Therefore, we obtain ICI/2 i-z 
core-blocks that include x. 

We label each varying leve l - /core  by an integer in 
a way that: (i) distinct cores get distinct labels (ii) two 
cores which are reversals o f  each other have identical 
"primary labels", but also have a bit flag to distinguish 
one f rom the other. We use primary labels of  leve l - / for  
LCP (i.e., for computing the tags of  l eve l - ( /+  1)) so that 
reverses of  sequences are treated identically during the 
computation of  cores. However  we concatenate the pri- 
mary level- / labels  their bit flags (and distinguish cores 
from their reversals) when labeling l e v e l - ( / +  1) cores. 
II 

Recall that the set of  cores at l eve l - / i s  denoted by 
or(i); the following can be deduced. 

L e m m a  4 We have ISI/(3 g - 2(log* I~(i)1 + ~)) _< 
IS(i)l _< ISI/2 ~ 

The following property can be derived using Lemma 
3. 

L e m m a  5 Let R be a level-i core and let Q be a 
block identical to R or its reverse, l f  R is a non-replicative 
core, then Q is a non-replicative core o f  level-i. I f  R is 
a replicative core, then there exists a replicative core U 
which covers Q and has the same level and (primary) 
label entries as R. 

Careful accounting for repeating cores and using the 
geometric decreasing size of  varying sequences will let 
us conclude that, 

T h e o r e m  6 Given a sequence S, its symmetric cores 
can be computed in time 0 (IS I log* I S I). The number o f  
symmetric cores is 0 ([ S I). 

4 Approximate nearest neighbors 

We only focus on binary sequences; extension to larger 
alphabets is trivial. Let d ( X ,  Y )  be the edit distance 
between two sequences X and Y under the following 
operations: (i) character edits, in the form of  inserting, 
deleting or replacing a character, and (ii) block edits, in 
the form of  moving or copying a block to another lo- 
cation, reversing a block or deleting a block which has 
another copy in the string. No two operations are al- 
lowed to overlap. Notice that d ( X ,  Y )  provides a metric 
as each of  the edit operations described above have a 
corresponding operation which reverses it. 
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Definition 1 Given a sequence S, its level-/binary 
histogram, denoted Ti ( S), is the binary vector of size 
O((2(log* IS[ + a + 1))i), whose jth entry, denoted 
T/(S)[j], has value 1 if the binary representation of j is 
a level-i-core ofS. l f j  is not a core of S then Ti (S)[j] --- 
0. The edit transformation of S is the concatenation 
of all Tj(S) for j = 0 , . . . ,  logn, and we denote it by 
T(S). 

The edit transformation of S lists all possible cores 
of all levels of S, a O(2 Isl) dimensional vector of flags 
each of which is set to 1 if the corresponding core is 
present in S. In what follows, we will not use this ex- 
plicit representation but rather just a list of cores (as 
pointers into the sequence) and the number of their oc- 
currences which is an O(ISI) representation. Under this 
alternative representation, it takes o(IsI log* ISl) time 
to generate this transform. 

Theorem 7 t2(d(X, Y))/log*(IXl + IYI) = 
II(T(X), T(Y)II1 = O(d(X, Y)log(IXl + IYI) 
log*( lxI  + IYI)) where IlU, VII1 E i  [u[i] - v[i]l .  

Proof. 

(1) IIT(X),T(Y)]I1 = O(log(lX I + IY[). log*(lX I + 
IYI) - d(X, Y)). Let Sx denote the set of all distinct 
cores of X.  

We make two observations both of which requires a 
proof that we have omitted here. Each character edit op- 
eration on X ,  i.e., insertion, deletion and replacement of  
any single character, can add or remove at most a + 1 + 
log*(l~(i)l) cores from Sx,  for 0 < i < log(IX I+ IYI)- 
Each block edit operation, i.e. changing the location of 
a block, reversing it, copying it to another location, or 
deleting it provided that another copy exists in X,  can 
add or remove at most 2(log*(l~(i)l) + ~ + 1) cores 
from Sx for 0 < i < log(lXI + IYI). Thus a sequence 
of d(X, Y) edit operations applied on X to obtain Y can 
change O(d(X, Y ) .  log(IX I + IYI).  log*(IX I + IYI)) 
entries of T(X).  

(2) a(d(X, Y)) -- liT(X), T(Y)II1- log*(lxl + IYI)- 
We describe a procedure that obtains Y by applying at 
most O(IIT(X), T(Y)I[1) log* (IX I+ IV I) operations on 
X. We will describe a procedure to obtain X[[Y by 
applying O([[T(X), T(Y)[h) log* (IX] + [Y[) block or 
character copy operations to X (or Y). Because each 
edit operation is reversible, this implies that we can ob- 
tain Y from XI]Y by O(][T(X),T(Y)[[1) log*([X[ + 
[Y D block or character delete operations. 

We now show how to obtain X[]Y from X doing 
O([[T(X),T(Y)[[1 • log*([X[ + [Y[) iterations. Let 
Yo(X) denote the empty string. In a given iteration i, 

we copy a substring of X or add a single character from 
cr to the right end of Y/_I(X) to obtain Y~(X). In the 
final iteration Y~(X) will be identical to Y, which we 
concatenate with X to obtain X[]Y. 

Iteration i works as follows. Consider the cores of 
Y that are also present in X or Y / - I ( X )  whose starting 
positions are within Y}_ 1 (X) in Y. Among them let C 
be the core whose ending position is the rightmost one 
(if more than one such core exists, pick up the one which 
is of the highest level). In this case we copy to the end 
of Y~_ x (X) the suffix of C which starts in Y at the right 
end of Y/_ 1 (X). 

We claim that each core of  Y which does not exist 
in X can result in the execution of O(log*(IXI + IYI)) 
iterations described above. Observe that at the end of 
iteration i - 1, no core C '  in Y that includes core C 
can exist in X or Y/- I (X) ;  otherwise C '  would be used 
instead of C. Charge the copying operation of the suffix 
of  C to the rightmost core C"  in Y which includes C 
and is one level above it. The total number of  cores 
C that can charge to a given core C "  of Y which does 
not exist in X is O(log*(IXl + IYI)), hence the claim 
follows. II 

Remark .  A somewhat different transformation was used 
in [CP+00] for what is called LZ-distances. A result 
similar to above is proven there to obtain an O(log 2 g) 
bound. Our bound is tighter, our distance function is 
allowed to be more general, and both upper and lower 
bound arguments are different from [CP+00]. 

SNN data structure. In order to solve the SNN prob- 
lem, it now suffices to solve the VNN problem under L1 
distance with query T(Q)  and database of  vectors T(X)  
for each sequence X in D. For simplicity, assume that 
all sequences have length g; it is a simple detail other- 
wise. Recall that each T(.)  is an O(2 e) vector in which 
there are at most O(g) nonzero entries. Furthermore, we 
can not only deduce that each entry is an integer at most 
£, but also that the sum of all entires in a vector is at most 
L This VNN problem is equivalent to a VNN problem 
on the Hamming metric by replacing each position by g 
long unary encoding to obtain binary vectors. We can 
solve this equivalent "sparse" VNN problem efficiently 
to an approximation as follows. 

We sketch our first approach. (There are many tech- 
nical details which we have omitted here, so this is just 
a sketch.) The approach is to take O(logg) samples of 
sizes 2, 22 , . . .  respectively. Each sample picks each lo- 
cation in the binary vector uniformly, randomly, with 
appropriate probability. All sampled positions are XOR- 
ed to get a O(log£) sized signature. We do this for 
each vector T(X)  in D and store it in a trie. For any 
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query vector T(Q) ,  we find its signature and retrieve the 
longest matching prefix of a signature in the database 
using the trie. This gives us a candidate. We repeat 
this procedure with O(log n) different signatures. We 
finally compare T(Q) with T ( X )  for each candidate 
X,  and output the one with smallest L1 distance with 
T(Q). We can now prove that with high probability 
(at least 1 - 1/n), the sequence thus determined is an 
1 + e approximation to the VNN of T(Q)  and hence an 
O(logglog* g) approximation to the SNN using previ- 
ous theorem. There is an important technical detail to be 
understood. We need to ensure that the sampling is done 
independently for each location in the vectors so that it 
can be accomplished in time proportional to the number 
ofnonzeros rather than the length of the vectors. We will 
show in the final version that this procedure works (with 
care, especially when query processing). 

The result described thus far constructs a data struc- 
ture in which most queries are successful (i.e., they find 
the approximate SNN). We can get a stronger result - 
that if the algorithm succeeds in constructing the data 
structure, it is good for  every query - by modifying the 
data structure of [KOR98] so that we need to only sam- 
ple from non-zero items. With this modification (details 
omitted), the result is 

Theorem 8 There is an algorithm forthe SNN prob- 
tern that takes O( (ne) °(1)) time and space. Every query 
runs in time O(e polylog(ng)). 

5 Sequence comparison with block reversals 
and character replacements 

Let X and Y be two size g sequences. In the rest of  
the section we will denote by d(X, Y )  the minimum 
number of character replacements and block reversals to 
convert X into Y; since edit operations do not overlap, 
no reversal is allowed on blocks wherein there is a char- 
acter replacement. Observe that d(X,  Y )  is the "sim- 
plest" nontrivial distance measure between sequences 
allowing block operations, hence it is a natural mea- 
sure. One can use standard dynamic programing to- 
gether with block labeling to compute d(X,  Y )  in O(g 2) 
time. We know of no algorithm in the literature that has 
a better running time. Below we describe an algorithm 
for computing d(X, Y )  in time O(glog a O- The pro- 
cedure relies on combinatorial properties of reversals in 
sequences. 

Definition 2 The substring X[i  : j] is said tobe  
reversible (with respect to Y )  if  X[i  : j] = Y[i : j ] - .  

The algorithm. We compute d(X,  Y )  in ~ iterations 
as follows. In iteration i, we compute d(i) = d(X[1 : 

i], Y [ I :  i]). Let X[il : i] be the longest suffix of  X [ l :  
i] which is reversible and let Pl the length of X[il  : 
i]'s period. For h _> 1, we inductively define :~h = 
[(i -- ih)/Ph] -- 1, and ih+l = ih + #h " Ph. We also 
define Ph + 1 tO be the period of X [i h+ 1 : i]  and define H 
theminimum h such that # h  = 0; noticethat H < log/. 

The algorithm computes d(i) as follows. For 1 _< 
h _< H ,  we set dh(i) = d ( i h - - 1 ) +  1 i f ~ h  _< 1 
and se tdh( i )  = dh( i - -ph )  i f # h  > 1. We also set 
do(i) = d(i - 1) + d(X[i], Y[i]) .  Then we compute 
d(i) = min{dh(i)} which completes the description of 
the algorithm. II 

We prove the correctness of the algorithm through 
the following lemmas. 

L e m m a  9 If  X ~  : i] is reversible and p is the length 
of the period of X ~j : i], then for any k <_ i - p, the 
substring X[k  : i] is reversible if  and only if  k = p • h 
forO < h < [ ( k - j + l ) / p ] - l .  

Proof. I f X [ j  : i ]  is reversible, then X[ j  : i ]  = Y[j  : 
i]'--, and hence X[ j+k]  = Y [ i - k ]  for all k < j - i +  1. 
Because p is the length of the period of X [ j  : i], X[ j  + 
k] = X[ j+p.h+k]  = Y[ i - k ]  for all k < i - j - p . h + l ,  
which implies X[ j  + p .  h : i] = Y [ j  + p .  h : i ] ' - ;  
therefore X [ j  + p- h : i] is reversible. I f X [ j  + k : i] is 
reversible, then X[ j  + h] = Y[i  - h] = X [ j  + k + h] 
for all h _< i j k. Therefore k must be the length of 
a period of X[i  - p - 1 : i] and hence o f X [ j  : i], which 
implies that k must be a multiple of p. II 

The statements below follow. 

Corollary 10 The only reversible suffixes of X[1 : 
i] are of the form X[ih + Phj : i] for all 0 <_ j <_ ~:h 
and 1 < h <_ H. l f  X[ j  : i] is reversible and p is the 
length of the period of X[ j  : i], then for any k >_ j + p, 
the substring X ~  : k] is reversible if  and only if  k = 
p . h  forO <_ h < [ ( k - i + l ) / p ] -  1. L e t X [ j  : i] 
be a reversible string whose period is of  length p and 
let X [h : i - kp] be a substring of X[ j  : i] such that 
h + p < i - kp. l f X [ h  : i - kp] is reversible then so is 
X[h : i]. 

Now the proof of  the lemma below follows, imme- 
diately giving the correctness of the entire algorithm. 

L e m m a  11 Consider any i and define Po = i - il 
where il is as defined in the algorithm. For I < h < H, 
dh ( i) is equal to the distance between X [1 : i] and Y [1 : 
i] provided a suffix of  length k for which Ph >_ k > Ph+ 1 
is reversed. 

It remains for us to determine the running time of 
the algorithm. We first focus on computing ix for all 
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1 < i < £; this will take time O(g). The algorithm for 
computing il for all 1 < i < g runs in three steps. 

1. First we set X '  -- X[1], $, X[2], $ , . . . ,  $, X[g] and 
Y '  = Y[1], $, Y[2], $ . . . ,  $, Y[e] where $ is a spe- 
cial character which is not in the original alphabet. 
Notice that for X[ i  : j] is reversible with respect to 
Y if and only i f X ' [ 2 i  - 1 : 2j  - 1] is reversible 
with respect to Y~. 

2. For all 1 < j < 2 £ -  l we compute the largest 
k for which X I [ j  - k : j + k] is reversible with 
respect to Y ' ;  let this be kj. This can be done by 
finding the longest common prefix between X ' [ j  : 
2£ - 1] and Y'[1 : j] ~-, the longest common suffix 
o f X ' [ 1  : j] a n d Y ' [ j  : 2 £ -  1] ~ ,  and picking 
the shortest of  the two. For finding either of  the 
two longest common items, it suffices to build a 
suffix tree of  X and Y ' -  which takes 0(£)  t ime 
and to preprocess it to answer the lowest common 
ancestor queries which takes O(1) time per query 
after 0(£)  preprocessing. 

3. For i = 1 , . . . ,  2g - 1 we set il to the smallest j for 
which j + kj > i. Such a j can be computed for all 
i by pushing each j ,  kj pair to a queue while going 
through all j from 1 to 2g - 1. 

Next we focus on computing the period of  any sub- 
string X [ j ,  i]. We will show that one can preprocess 
X in O(g log  2 g) time to be able to compute the pe- 
riod of  substring X [ j  : i] in O(log2(i  - j ) )  time. As 
the preprocessing step we simply give labels to all sub- 
strings of  X of  size 2 ~ 0 _< k < [loggJ such that 
each distinct substring gets a distinct label. This can 
be done in O(£ logg)  time using [KMR72]. As the sec- 
ond preprocessing step, we sort all substrings that are 
given the same label according to their starting loca- 
tion in X.  This can be done using stable sorting in t ime 
o ( g  log 2 g) for all labels of  all lengths. Using these la- 
bels one can compute the period of a substring S of  size 
i - j through the following observation. I f  a substring 
S of  X has a period of  length Ps then p x ,  the length of  
the period of X ,  satisfies Ps >_ p x  or P x  >_ [S]. There- 
fore if two identical substrings X [ j  - 2/l°gq -h  : k] 
and X [ k  - 2Uog iJ-h : k t] (which have identical labels) 
overlap, then the period of X can not be within the range 
{2 [ l °g i j -h-1  -'F 1 , . . . ,  2U°gq-h} .  

Thus we can check for all c~ = [log i - j J  - 1, . . . ,  1, 0 
whether S has a period of  length in the range 2 ~ , . . .  2 ~ -  1 + 
1 by finding the largest k < i - 2 ̀ ~-1 for which X [ k  - 
2 ~ : k] = X[ i  - 2 ~' : i]. This is easily done in O( logg)  
time by binary search on the sorted list for substrings 
with label identical to that of  X[ i  - 2 ~ : i]. Each 

query for the period of  a substring therefore takes time 
O(log ~ g) in the worst case. 

This combined with the iteration for computing d(i) 's  
gives, 

T h e o r e m  12 Given two sequences X a n d Y  of  length 
g, there exists an O(glog  3 g) time algorithm to compute 
d( X , Y )  i f  only character replacements and block rever- 
sals are allowed. 

R e m a r k .  Our original version of  this algorithm used 
symmetric LCP; here, we provide a simpler algorithm 
without using symmetric LCP. By a more sophisticated 
algorithm, we can improve the running time to O(g log 2 g). 

6 Discussion 

We can extend our results to take into account linear 
transform of  blocks as well. Consider LCP parsing in 
Section 3.1. In order to take care of  block linear-transforms 
in addition to block reversals, we replace each symbol 

s [O-  s[~ - ~] 
S[i] as follows. Say s[i-1]-s[i-2l  = x / y  when com- 
mon factors are removed. We use zllu in place of  S[i] 
at each iteration of  symmetric LCP. We call this scaled 
symmetric LCP. The core-blocks we obtain will have the 
property that i f  there is a block R that is a linear trans- 
form o f  Q fo r  any constant x and (~, and Q is a core- 
block, then R will also be a core-block. Other prop- 
erties of  symmetric LCP and cores can be proved for 
scaled symmetric LCP and cores with appropriate mod- 
ifications. I f  we wanted to allow neither block reversals 
or transforms, we use the vanilla LCP and cores from 
[SV96]. I f  we wanted to allow only linear transforms 
and no block reversals, we use vanilla LCP using the 
character transformation above. Full technical descrip- 
tion will be given in the final version of  this paper. 

The basic problem still remains open: can we solve 
the SNN problem without any block operations while 
allowing only character edits? Our LCP based transfor- 
mation does not seem to provide any insight into the edit 
distance between two sequences when block operations 
are disallowed: while the upper bound in Theorem 7 still 
holds, the lower bound is no longer valid. Hence, a new 
approach may have to be developed. Another interest- 
ing direction is to design efficient algorithms for simple 
sequence comparison problems with other block opera- 
tions [LT96]. 
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