
Approximate nearest neighbors and sequence comparison
with block operations

S. Muthukr ishnan * Si.ileyman Cenk S. ahinalp t

Abstract

We study sequence nearest neighbors (SNN). Let D be
a database o fn sequences; we would like topreprocess
D so that given any on-line query sequence Q we can
quickly find a sequence S in D for which d(S, Q) <_
d(S, T) for any other sequence T in D. Here d(S, Q)
denotes the distance between sequences S and Q, de-
fined to be the minimum number of edit operations needed
to transform one to another (all edit operations will be
reversible so that d(S, T) = d(T, S) for any two se-
quences T and S). These operations correspond to the
notion of similarity between sequences that we wish to
capture in a given application. Natural edit operations
include character edits (inserts, replacements, deletes
etc), block edits (moves, copies, deletes, reversals) and
block numerical transformations (scaling by an additive
or a multiplicative constant). The SNN problem arises
in many applications.

We present the first known efficient algorithm for
"approximate'" nearest neighbor search for sequences
with preprocessing time and space polynomial in size of
D and query time near-linear in size of Q. We assume
the distance d(S, T) between two sequences S and T is
the minimum number of character edits and block oper-
ations needed to transform one to the other. The approx-
imation factor we achieve is O(logg(log* g)2), where g
is the size of the longest sequence in D. In addition,

*AT& T Labs - Research, 180 Park Avenue, Florham Park, NJ
07932; email:muthu@ research, att. cor~

tDepartment of Eleclrical Engineering and Computer Sci-
ence, Case Western Reserve University, Cleveland, OH 44106;
email:cenkOeecs, cwru. edu.

Permission to make digital or hard copies of all or part of tiffs work for
personal or classroom use is granted without fee provided that copies
are not made or distributed [br profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permissirn and/or a fee.
STOC 2000 Portland Oregon USA
Copyright ACM 2000 1-58113-184-4/00/5...$5.00

we also give an algorithm for exactly computing the dis-
tance between two sequences when edit operations of
the type character replacements and block reversals are
allowed. The time and space requirements of the algo-
rithm is near linear; previously known approaches take
at least quadratic time.

1 Introduction

The sequence nearest neighbor (SNN) problem is as fol-
lows. We are given a database D of sequences for pre-
processing; given an on-line query sequence Q, our goal
is to return a sequence S in D whose distance d(S, Q)
to Q is no more than that of any other sequence T to
Q. Distance between two sequences is defined to be
the minimum number of edit operations needed to trans-
form one to another (all edit operations of interest are
reversible so that d(S, T) = d(T, S) for any two se-
quences T and S). The nature of SNN problem depends
on the edit operation that is permitted which corresponds
to the notion of similarity between sequences that we
wish to capture for an application. Natural edit opera-
tions include character edits (inserts, replacements, deletes
etc), block edits (moves, copies, deletes, reversals) and
block numerical transformations (scaling by an additive
or a multiplicative constant). The SNN problem arises in
many applications and it is a "grand problem" of Com-
binatorial Pattern Matching.

Let the number of sequences in D be n and the max-
imum length of the sequences in D be L Under nearly
any set of edit operations, all known algorithms for the
SNN problem face the "dimensionality bottleneck" in
the worst case, that is, they cannot use subexponential
(o(2e)) preprocessing cost and yet obtain query time bounds
better than that obtained by comparing the query se-
quence to each in the database (say, sublinear - o(ng)

- time). Overcoming this d!mensionality bottleneck un-
der nontrivial edit operations is an important open issue
in Combinatorial Pattern Matching.

416

In this paper, we make some limited progress to-
wards solving this problem - we present the first known
efficient algorithm for "approximate" nearest neighbor
search with preprocessing time and space polynomial
in size of D and query time near-linear in size of Q.
Our result holds for the block edit distance d(S, T) be-
tween two sequences S and T defined to be the min-
imum number of character edits and block operations
needed to transform one to the other. Another contri-
bution of the paper is an algorithm to exactly compute
the distance between two sequences under a block oper-
ation, namely, reversals. We now describe our results in
more detail.

Context. Significant progress has been made on the
nearest neighbor problem (NN) recently; however, most
of those results are for vector spaces, t That is, the ob-
jects are vectors and the distance between two vectors
is defined by a norm (such as Euclidean, or L~o, etc)
of their difference. We refer to these as vector nearest
neighbor (VNN) problems. While a sequence of length
£ may be thought of as a £ dimensional vector, SNN
problems offer distinct challenges. Edit operations al-
low nontrivial alignments between two sequences (po-
sition i in one sequence may align with position j ~ i
in the other for distance computation) while the distance
functions for vectors allow only the trivial alignment of
ith position in one vector with that in the other. Nontriv-
ial alignments pose major technical difficulties. In pres-
ence of such alignments, even computing the distance
between two sequences may be expensive (quadratic or
even NP-hard, depending on the edit operations being
considered); in contrast, the vector norms can be com-
puted in time linear in the number of dimensions.

Distance between two sequences. The distance be-
tween two sequences is the minimum number of edit
operations needed to transform one to another. An im-
portant technical condition is that the operations must
be non-overlapping, i.e., no character can be involved in
more than one edit operation. Some edit operations are
as follows:

1. Character edits which includes inserting or delet-
ing a single character or replacing a single charac-
ter by another. These are motivated by transcription
errors in text, bit transmission errors in commu-
nication channels, or experimental errors in read-
ing a genomic sequence, etc. These are of classi-
cal interest, having been studied at least as early as
60's [Lev66].

l An exception is the recent result in [F199] for the Hausdorffmea-
sure which is not related to SNN problems we study.

2. Block arrangements which involves moving a block
(any consecutive set of characters) from one place
to another; this is a rather natural notion in defin-
ing similarity of objects (such as in moving a para-
graph of a text to another location [T84] or moving
objects around in pen computing [LT96] or intrase-
quence rearrangements in genomic data [GD91]).
It also involves copying blocks from one place to
another within a sequence, or deleting a copy of a
block that exists elsewhere. These operations are
motivated by data compression.

3. Block reversals which involves reversing an entire
block; this is a common operation in multimedia
data such as music scales [SK83], or in assembling
genomic sequences [G].

4. Block linear-transformation which involves chang-
ing each position Q[i] in some block of Q to ~Q[i]+

where ~b and x are multiplicative and additive
scaling constants respectively. This is of interest
in financial data analysis where one allows scaling
effects in tracking similar trends [AL+95].

Although these edit operations are motivated from
many applications, we do not consider the specifics of
~iny application. Rather, we focus on the complexity of
nearest neighbor search while allowing various edit op-
erations above.

Our Contributions. Our first set of results are Monte
Carlo type algorithms for approximately solving the SNN
problem. Say $1, . . . , Sn is the database D of sequences,
e = m ~ IS~l and IDI = ~ IS~ I- Our algorithms use
preprocessing time and space polynomial in tDI and g.
A query with sequence Q takes time O(IQI polytog(ne))
and returns a sequence S in D such that d(S, Q) =
O(logg(log* £)2)d(T, Q) for any other sequence T in
D, with high probability (at least 1 - 1 / n) . z Here, d(S, QI
is what we call the block edit distance defined to be the
minimum number of character edits (insertions, dele-
tions and replacements) and block operations (moves,
copies, deletes, reversals) needed to transform S to Q
(or vice versa). In contrast, for VNN problems, (1 + e)
[KOR98, IM98] or O(logloge) [198] approximations
are known. However, ours is the first result for the SNN
problem with any non-trivial edit operation (if only char-
acter replacements are allowed in which case the align-
ment is trivial, the known results for VNN problem un-
der the Hamming distance apply to the SNN problem).

Our second result is on the basic problem of com-
puting the distance between two sequences with block

2Given an integer k, l og*k denotes, r a i n { / > 0 : log (i) k < 1},
where log(i) k = l og (log (i - l) k), and log(°) x = 0.

417

edit operations. If the distance d(S,T) between two
sequences S and T is the minimum number of arbitrary
block moves needed to transform S to T, the problem
of computing d(S, T) become NP-hard [LT96]. Thus,
we focus on block reversals only. Since it is not possible
to transform a given sequence S (e.g., all O's) to every
other sequence T (e.g., all l ' s) by block reversals alone,
d(S, T) is not well defined if we allow only block rever-
sal operations. The simplest well-defined distance with
block reversals additionally allows character replacements.
In this paper, we consider this distance between two se-
quences, and present an o(Is I polulog(ISI)) time de-
terministic algorithm for exactly computing it; the naive
solution employs dynamic programming and it takes time
e(ISl2).

Technical Overview. Algorithms for VNN problems
work by dimensionality reduction, space partitioning,
bucketing etc., none of which seems to work directly
with distance functions involving nontrivial alignments
such as ours. Our approach for SNN problems trans-
forms sequences into sparse vectors in very large di-
mensions. The transformation is inspired by recent re-
sults on the communication complexity of exchanging
documents [CP+00] which used the idea of parsing se-
quences into "core" subsequences as per [SV96] (rely-
ing in turn on the "symmetry breaking" technique from
[CV86]). We develop more general parsing strategies
here which capture properties of cores involving not only
equality of subsequences, but also equality under rever-
sals.

Map. We describe the notation in Section 2 and our
general parsing strategy for sequences in Section 3. In
Section 4 we show how to solve the SNN problem ap-
proximately using our parsing. In Section 5, we show
how to compute the distance between two sequences un-
der edit operations specified received. In Section 6 we
discuss open problems.

2 Preliminaries

In the rest of the paper we denote sequences by P, Q, R, S..,
integers and binary numbers by i, j , k.. and constants by
c~,/3, 7... All sequences have characters drawn from al-
phabet a. Given a sequence S, let S[i] denote its ith
character and S[i : j] denote the block extending from
S[i] to S[j]. We denote by SIIQ the concatenation of
two sequences S and Q. The reverse of S is the se-
quence S[ISI],..., S[2], S[1], and is denoted by S ~- . A
sequence in which all characters are identical is called
a repeating sequence. We denote by a t, a repeating se-
quence composed of I repetitions of character a. Sim-
ilarly, for a given sequence Q, we denote by QZ, a se-

quence obtained by concatenating l copies of Q. Here
are a few standard definitions. A sequence S is called
periodic with I > 1 repetitions if there exists a block Q
such that S = QZlIQ- where Q - is a prefix of Q; Q
is called a period of S. The shortest such Q is called
the period of S; the period of S is the period of all pe-
riods of S. A sequence S in which S[i] ~ S[i + 1]
for all i is called a varying sequence. Given sequence
S, a max-repeating block of S is a repeating sequence
of at least two characters which can not be further ex-
tended as a repeating sequence. Following the removal
of all max-repeating blocks of S, we get a number of se-
quences which are called the remaining blocks of S. We
remind readers again that in defining the edit distance
between two sequences, the edit operations applied to
one sequence to transform it to the other can not over-
lap.

3 Generalized Parsing

In this section, we partition any given sequence into
blocks (called cores) using a parsing technique that gen-
eralizes the Locally Consistent Parsing (LCP) technique
of Sahinalp and Vishkin [SV96]. Many of the properties
of LCP will also hold for our generalized parsing, but
our parsing will have additional properties not only in
terms of the equality of cores, but also with their rever-
sals. We call the resultant parsing Symmetric LCP and
obtain Symmetric Cores.

3.1 Symmetric LCP

Given a varying sequence S (i.e., S[i] ¢ S[i + 1] for
i = 1 . . . ISl), symmetric LCP designates at most ISl/2
and at least IS1/3 (possibly overlapping) blocks of S as
core-blocks. The concatenation of these core-blocks (af-
ter removing their overlaps) gives S with the exception
of a constant number of characters on its left and right
margins.

Step 1. Mark the leftmost character of S and every
second (i.e., odd indexed) character to its right, till the
(log* I~1 + e~)th character for some constant c~ to be de-
termined later. Similarly mark the rightmost character
of S and every second character to its left up to the
(log* 1~1 + ~) character.

Step 2. For each character x between the leftmost and
the rightmost marked characters compute a tag, as fol-
lows. Let v be the left neighbor of x and y be the right
neighbor. Initially assigntago(x) = x. Computetagj(x)
for 1 _< j _< log* M, in log* [tr[iterations as follows.

Denote by l the index of the least significant bit in
which tagj+l(x) is different from tagj+l(v), and r that
between tagj+l(x) and tagj+l(y). Also let l' be the bit

418

value of tagj+l (x) at position I and likewise with r ' (it
is crucial that we consider the bit value of x). Define
L = lilt' and R = "li t ' . Let max(x) = max{R, L)
and rain(x) = min{R, L} Assign

tagj+l(x) = max(x)llmin(x).

The tag obtained after the last iteration is simply denoted
as tag henceforth.

Step 3. Mark each character whose tag is a local max-
ima, i.e., is greater than the tags of both its left and its
right neighbors. Also, mark each character whose tag
is a local minima, (i.e., is smaller than the tags of both
its left and its right neighbors), and which has no neigh-
bors that have previously been marked. The characters
marked so far are called theprimary marked characters.

Step 4. Mark characters between any two successive
marked characters as equally spaced as possible so that
no two successive marked characters are more than 3
apart. This marking is done in a symmetric manner
walking between the two consecutive marked characters
from both left and right simultaneously. The characters
marked here are called the secondary marked charac-
ters. II

For each marked character S[i], we designate the
block S[i-log* I~1-~ : /+ log* I~1+~] as a core-block.

Lemma 1 For any j and i, tagj(S[i]) 7k tagj(S[i+
1]).

Proof: Consider any 4 consecutive characters abcd
where b 5~ c. Let L(b), R(b), L(e) and R(c), be as
defined earlier. If min(b) = min(c) (otherwise, we
are done), then the bit value at the least significant bit
location implied by rain(b) is identical in both b and c.
This means that max(b) must be R(b) llr(b) and max(c)
must be L(e)IIZ(e) and hence max(b) 7~ max(e) since
R(b) and L(c) must differ in the least significant bit. II

Therefore, the "sequence" of tag values after each
iteration remains a varying one and iteration proceeds
as usual. Also, at the end of the iterations, the following
holds.

Lemma 2 The maximum value of a tag is a small
constant o~ which does not depend on S and a.

Proof: For any j , if the number of bits to repre-
sent tagj(x) is k, then the number of bits to represent
tagj+l (x) is 2(log k)+2 . After log* I~1 iterations k will
be a small constant (denoted by a henceforth) which can
not be decreased further. II

L e m m a 3 l f a block Q & designated as a core-block,
then all blocks identical to Q or its reverse are desig-
nated as core-blocks.

Proof: Consider the marked location that led to Q[0 :
IQI - 1] being a core-block, and let that be Q[i]. In the
first iteration of the tag computation, tag1 (Q[i]), deter-
mined by character Q[i], its left neighbor and its right
neighbor. In each of the following iterations, tagj (Q[i])
depends on one additional character to the left and one
additional character to the right. Thus its tag is deter-
mined only by at most log* Icrl characters to its left and
log* I~1 characters to its right. Consider any other block
R that is a reversal of Q. Then R[IQI - i - 1] has the
same tag values as Q[i] in each iteration until the end,
and therefore R would be declared a core-block as well.
(If R were identical to Q, R[i] would play the role of
R[IQ[- i - 1].) 1

Following observations have easy proofs. (1) The
number of core-blocks is at most 1S]/2. (Proof follows
from the fact that no two adjacent characters may be
marked owing to the local maxima and local minima re-
quirement in Step 4). (2) For any given sequence S, ev-
ery character except possibly the rightmost log* la[+
and the leftmost log* I~1 + ~ characters is included in
at least one core-block. (Proof follows since no two
primary marked characters are separated by more than

+ 1, again due to Step 4).

Remark . One of the main difference between the stan-
dard LCP [SV96] and our symmetric LCP lies in Step 2
(there are other technical differences we will bring out
explicitly in the final version). In standard LCP, tags are
computed only from the left neighbor. In doing so, they
adopted the symmetry-breaking technique of Cole and
Vishkin [CV86]. Modifying it as we do to consider both
the left and the right neighbor would mean that we ex-
ploit the symmetry, as we need to, in order to identify
subsequences and their reversals by local tag computa-
tions. I I

It is easy to see that for a sequence S of alphabet set
or, symmetric LCP can be executed in time O(ISI log* I~1).

3.2 Symmetric Core Computation

Given a sequence S, we show how to designate and label
some of its blocks as symmetric cores in O(log IsI) it-
erations. Symmetric LCP is used repeatedly in this pro-
cess. Essentially, we would like to use symmetric LCP
recursively; however, there are repeating blocks of a se-
quence that complicate the issues. Recall the constant a
from the previous section.

Initially, we designate each character of S as a core
of level-0. In iteration i, we compute the level-i cores of

419

S by using cores of l e v e l - (/ - 1); although some level-/
cores overlap, no level- /core completely covers another.
We denote by S(0) the sequence S itself, and by S(i)
the sequence of level - /cores (in the order they appear
in S). We also denote by or(0) the alphabet a itself, and
by or(i) the set o f all core labels at level-/. The cores of
level - /are computed as follows.

Repl icat ive cores of level-/. We designate as a core-
block every max-repeating block R : a r of S(i - 1)
for which r > log* Icr(i - 1)1 4- ~. The core of such
a core-block is the concatenation of the r l e v e l - (/ - 1)
cores represented by label a in S(i - 1). We label this
core with the three-tuple (a, i - 1, r) .

We then consider each label x in S (i - 1) which
represents a level-(i - 1) replicative core. Let the la-
bel o f such a core C be the three-tuple (a, l, r) (where
l _< i - 2 is the level entry and r the length entry). I f
r >_ (2 i-z - 1)(log* [~r(i - 1)1 + ~) + 2 i -1 , we desig-
nate this single label as singleton core-block and abuse
our terminology to call it a max-repeating block. We
identify its l e v e l - (/ - 1) core as a level- /(replicat ive)
core with label (a, l, r) once again.

Vary ing cores of level-/. Given a max-repeating or re-
maining block R for which IRI < log* I ~ (i - 1) 1 + ~ , we
mark every second label in a symmetric manner walking
from left end and right end simultaneously. In each left-
over block O for which IQI > log* [tr(i -- 1)l + a , we
mark the label implied by symmetric LCP from the pre-
vious section.

For each marked label x, let y be the leftmost label
to the right o f x which is designated as a singleton core-
block. Similarly, let z be the rightmost label to the left
o f x which is designated as a singleton core-block. Also,
let k denote the number of labels between x and y and l
denote the number of labels between x and z.

We append the leftmost m in (k + 1, log* [tr(i - 1)1 +
cQ labels to the right of x, and the rightmost min(l 4-
1, log* l a (i - 1) l + a) labels to the left o f x . Such a block
is called the core-block of label x. However, we avoid
designating a core-block for x if to the left (respectively,
right) of x, there are fewer than log* l a (i - 1) l+ cr labels
and no singleton core-block.

For each core-block obtained, we compute its core C
as follows: (1) I f the leftmost label is a singleton core-
block R and its level entry is m, then C includes the
rightmost 2 i - m × (k + 1 - log* Ic~(m)l - ~) level-m
cores of R and the cores of the labels in the core-block
of x. (2) If the leftmost label is not singleton core-block
we simply concatenate all the cores in the core-block of
X.

Finally we consider each label x which represents a
l e v e l - (/ - 1) replicative core, but is not designated as
a singleton core-block. We treat x as if it is a max-
repeating block of S(i - 1) of size ICl/2 i-'-1, where
[C[is the length entry of x. Therefore, we obtain ICI/2 i-z
core-blocks that include x.

We label each varying leve l - /core by an integer in
a way that: (i) distinct cores get distinct labels (ii) two
cores which are reversals o f each other have identical
"primary labels", but also have a bit flag to distinguish
one f rom the other. We use primary labels of leve l - / for
LCP (i.e., for computing the tags of l eve l - (/+ 1)) so that
reverses of sequences are treated identically during the
computation of cores. However we concatenate the pri-
mary level- / labels their bit flags (and distinguish cores
from their reversals) when labeling l e v e l - (/ + 1) cores.
II

Recall that the set of cores at l eve l - / i s denoted by
or(i); the following can be deduced.

L e m m a 4 We have ISI/(3 g - 2(log* I~(i)1 + ~)) _<
IS(i)l _< ISI/2 ~

The following property can be derived using Lemma
3.

L e m m a 5 Let R be a level-i core and let Q be a
block identical to R or its reverse, l f R is a non-replicative
core, then Q is a non-replicative core o f level-i. I f R is
a replicative core, then there exists a replicative core U
which covers Q and has the same level and (primary)
label entries as R.

Careful accounting for repeating cores and using the
geometric decreasing size of varying sequences will let
us conclude that,

T h e o r e m 6 Given a sequence S, its symmetric cores
can be computed in time 0 (IS I log* I S I). The number o f
symmetric cores is 0 ([S I).

4 Approximate nearest neighbors

We only focus on binary sequences; extension to larger
alphabets is trivial. Let d (X , Y) be the edit distance
between two sequences X and Y under the following
operations: (i) character edits, in the form of inserting,
deleting or replacing a character, and (ii) block edits, in
the form of moving or copying a block to another lo-
cation, reversing a block or deleting a block which has
another copy in the string. No two operations are al-
lowed to overlap. Notice that d (X , Y) provides a metric
as each of the edit operations described above have a
corresponding operation which reverses it.

420

Definition 1 Given a sequence S, its level-/binary
histogram, denoted Ti (S), is the binary vector of size
O((2(log* IS[+ a + 1))i), whose jth entry, denoted
T/(S)[j], has value 1 if the binary representation of j is
a level-i-core ofS. l f j is not a core of S then Ti (S)[j] ---
0. The edit transformation of S is the concatenation
of all Tj(S) for j = 0 , . . . , logn, and we denote it by
T(S).

The edit transformation of S lists all possible cores
of all levels of S, a O(2 Isl) dimensional vector of flags
each of which is set to 1 if the corresponding core is
present in S. In what follows, we will not use this ex-
plicit representation but rather just a list of cores (as
pointers into the sequence) and the number of their oc-
currences which is an O(ISI) representation. Under this
alternative representation, it takes o(IsI log* ISl) time
to generate this transform.

Theorem 7 t2(d(X, Y))/log*(IXl + IYI) =
II(T(X), T(Y)II1 = O(d(X, Y)log(IXl + IYI)
log*(lxI + IYI)) where IlU, VII1 E i [u[i] - v[i]l .

Proof.

(1) IIT(X),T(Y)]I1 = O(log(lX I + IY[). log*(lX I +
IYI) - d(X, Y)). Let Sx denote the set of all distinct
cores of X.

We make two observations both of which requires a
proof that we have omitted here. Each character edit op-
eration on X , i.e., insertion, deletion and replacement of
any single character, can add or remove at most a + 1 +
log*(l~(i)l) cores from Sx, for 0 < i < log(IX I+ IYI)-
Each block edit operation, i.e. changing the location of
a block, reversing it, copying it to another location, or
deleting it provided that another copy exists in X, can
add or remove at most 2(log*(l~(i)l) + ~ + 1) cores
from Sx for 0 < i < log(lXI + IYI). Thus a sequence
of d(X, Y) edit operations applied on X to obtain Y can
change O(d(X, Y) . log(IX I + IYI). log*(IX I + IYI))
entries of T(X).

(2) a(d(X, Y)) -- liT(X), T(Y)II1- log*(lxl + IYI)-
We describe a procedure that obtains Y by applying at
most O(IIT(X), T(Y)I[1) log* (IX I+ IV I) operations on
X. We will describe a procedure to obtain X[[Y by
applying O([[T(X), T(Y)[h) log* (IX] + [Y[) block or
character copy operations to X (or Y). Because each
edit operation is reversible, this implies that we can ob-
tain Y from XI]Y by O(][T(X),T(Y)[[1) log*([X[+
[Y D block or character delete operations.

We now show how to obtain X[]Y from X doing
O([[T(X),T(Y)[[1 • log*([X[+ [Y[) iterations. Let
Yo(X) denote the empty string. In a given iteration i,

we copy a substring of X or add a single character from
cr to the right end of Y/_I(X) to obtain Y~(X). In the
final iteration Y~(X) will be identical to Y, which we
concatenate with X to obtain X[]Y.

Iteration i works as follows. Consider the cores of
Y that are also present in X or Y / - I (X) whose starting
positions are within Y}_ 1 (X) in Y. Among them let C
be the core whose ending position is the rightmost one
(if more than one such core exists, pick up the one which
is of the highest level). In this case we copy to the end
of Y~_ x (X) the suffix of C which starts in Y at the right
end of Y/_ 1 (X).

We claim that each core of Y which does not exist
in X can result in the execution of O(log*(IXI + IYI))
iterations described above. Observe that at the end of
iteration i - 1, no core C ' in Y that includes core C
can exist in X or Y/- I (X) ; otherwise C ' would be used
instead of C. Charge the copying operation of the suffix
of C to the rightmost core C" in Y which includes C
and is one level above it. The total number of cores
C that can charge to a given core C " of Y which does
not exist in X is O(log*(IXl + IYI)), hence the claim
follows. II

Remark . A somewhat different transformation was used
in [CP+00] for what is called LZ-distances. A result
similar to above is proven there to obtain an O(log 2 g)
bound. Our bound is tighter, our distance function is
allowed to be more general, and both upper and lower
bound arguments are different from [CP+00].

SNN data structure. In order to solve the SNN prob-
lem, it now suffices to solve the VNN problem under L1
distance with query T(Q) and database of vectors T(X)
for each sequence X in D. For simplicity, assume that
all sequences have length g; it is a simple detail other-
wise. Recall that each T(.) is an O(2 e) vector in which
there are at most O(g) nonzero entries. Furthermore, we
can not only deduce that each entry is an integer at most
£, but also that the sum of all entires in a vector is at most
L This VNN problem is equivalent to a VNN problem
on the Hamming metric by replacing each position by g
long unary encoding to obtain binary vectors. We can
solve this equivalent "sparse" VNN problem efficiently
to an approximation as follows.

We sketch our first approach. (There are many tech-
nical details which we have omitted here, so this is just
a sketch.) The approach is to take O(logg) samples of
sizes 2, 22 , . . . respectively. Each sample picks each lo-
cation in the binary vector uniformly, randomly, with
appropriate probability. All sampled positions are XOR-
ed to get a O(log£) sized signature. We do this for
each vector T(X) in D and store it in a trie. For any

421

query vector T(Q) , we find its signature and retrieve the
longest matching prefix of a signature in the database
using the trie. This gives us a candidate. We repeat
this procedure with O(log n) different signatures. We
finally compare T(Q) with T (X) for each candidate
X, and output the one with smallest L1 distance with
T(Q). We can now prove that with high probability
(at least 1 - 1/n), the sequence thus determined is an
1 + e approximation to the VNN of T(Q) and hence an
O(logglog* g) approximation to the SNN using previ-
ous theorem. There is an important technical detail to be
understood. We need to ensure that the sampling is done
independently for each location in the vectors so that it
can be accomplished in time proportional to the number
ofnonzeros rather than the length of the vectors. We will
show in the final version that this procedure works (with
care, especially when query processing).

The result described thus far constructs a data struc-
ture in which most queries are successful (i.e., they find
the approximate SNN). We can get a stronger result -
that if the algorithm succeeds in constructing the data
structure, it is good for every query - by modifying the
data structure of [KOR98] so that we need to only sam-
ple from non-zero items. With this modification (details
omitted), the result is

Theorem 8 There is an algorithm forthe SNN prob-
tern that takes O((ne) °(1)) time and space. Every query
runs in time O(e polylog(ng)).

5 Sequence comparison with block reversals
and character replacements

Let X and Y be two size g sequences. In the rest of
the section we will denote by d(X, Y) the minimum
number of character replacements and block reversals to
convert X into Y; since edit operations do not overlap,
no reversal is allowed on blocks wherein there is a char-
acter replacement. Observe that d(X, Y) is the "sim-
plest" nontrivial distance measure between sequences
allowing block operations, hence it is a natural mea-
sure. One can use standard dynamic programing to-
gether with block labeling to compute d(X, Y) in O(g 2)
time. We know of no algorithm in the literature that has
a better running time. Below we describe an algorithm
for computing d(X, Y) in time O(glog a O- The pro-
cedure relies on combinatorial properties of reversals in
sequences.

Definition 2 The substring X[i : j] is said tobe
reversible (with respect to Y) if X[i : j] = Y[i : j] - .

The algorithm. We compute d(X, Y) in ~ iterations
as follows. In iteration i, we compute d(i) = d(X[1 :

i], Y [I : i]). Let X[il : i] be the longest suffix of X [l :
i] which is reversible and let Pl the length of X[il :
i]'s period. For h _> 1, we inductively define :~h =
[(i -- ih)/Ph] -- 1, and ih+l = ih + #h " Ph. We also
define Ph + 1 tO be the period of X [i h+ 1 : i] and define H
theminimum h such that # h = 0; noticethat H < log/.

The algorithm computes d(i) as follows. For 1 _<
h _< H , we set dh(i) = d (i h - - 1) + 1 i f ~ h _< 1
and se tdh(i) = dh(i - -ph) i f # h > 1. We also set
do(i) = d(i - 1) + d(X[i], Y[i]) . Then we compute
d(i) = min{dh(i)} which completes the description of
the algorithm. II

We prove the correctness of the algorithm through
the following lemmas.

L e m m a 9 If X ~ : i] is reversible and p is the length
of the period of X ~j : i], then for any k <_ i - p, the
substring X[k : i] is reversible if and only if k = p • h
forO < h < [(k - j + l) / p] - l .

Proof. I f X [j : i] is reversible, then X[j : i] = Y[j :
i]'--, and hence X[j+k] = Y [i - k] for all k < j - i + 1.
Because p is the length of the period of X [j : i], X[j +
k] = X[j+p.h+k] = Y[i - k] for all k < i - j - p . h + l ,
which implies X[j + p . h : i] = Y [j + p . h : i] ' - ;
therefore X [j + p- h : i] is reversible. I f X [j + k : i] is
reversible, then X[j + h] = Y[i - h] = X [j + k + h]
for all h _< i j k. Therefore k must be the length of
a period of X[i - p - 1 : i] and hence o f X [j : i], which
implies that k must be a multiple of p. II

The statements below follow.

Corollary 10 The only reversible suffixes of X[1 :
i] are of the form X[ih + Phj : i] for all 0 <_ j <_ ~:h
and 1 < h <_ H. l f X[j : i] is reversible and p is the
length of the period of X[j : i], then for any k >_ j + p,
the substring X ~ : k] is reversible if and only if k =
p . h forO <_ h < [(k - i + l) / p] - 1. L e t X [j : i]
be a reversible string whose period is of length p and
let X [h : i - kp] be a substring of X[j : i] such that
h + p < i - kp. l f X [h : i - kp] is reversible then so is
X[h : i].

Now the proof of the lemma below follows, imme-
diately giving the correctness of the entire algorithm.

L e m m a 11 Consider any i and define Po = i - il
where il is as defined in the algorithm. For I < h < H,
dh (i) is equal to the distance between X [1 : i] and Y [1 :
i] provided a suffix of length k for which Ph >_ k > Ph+ 1
is reversed.

It remains for us to determine the running time of
the algorithm. We first focus on computing ix for all

422

1 < i < £; this will take time O(g). The algorithm for
computing il for all 1 < i < g runs in three steps.

1. First we set X ' -- X[1], $, X[2], $, . . . , $, X[g] and
Y ' = Y[1], $, Y[2], $. . . , $, Y[e] where $ is a spe-
cial character which is not in the original alphabet.
Notice that for X[i : j] is reversible with respect to
Y if and only i f X ' [2 i - 1 : 2j - 1] is reversible
with respect to Y~.

2. For all 1 < j < 2 £ - l we compute the largest
k for which X I [j - k : j + k] is reversible with
respect to Y ' ; let this be kj. This can be done by
finding the longest common prefix between X ' [j :
2£ - 1] and Y'[1 : j] ~-, the longest common suffix
o f X ' [1 : j] a n d Y ' [j : 2 £ - 1] ~ , and picking
the shortest of the two. For finding either of the
two longest common items, it suffices to build a
suffix tree of X and Y ' - which takes 0(£) t ime
and to preprocess it to answer the lowest common
ancestor queries which takes O(1) time per query
after 0(£) preprocessing.

3. For i = 1 , . . . , 2g - 1 we set il to the smallest j for
which j + kj > i. Such a j can be computed for all
i by pushing each j , kj pair to a queue while going
through all j from 1 to 2g - 1.

Next we focus on computing the period of any sub-
string X [j , i]. We will show that one can preprocess
X in O(g log 2 g) time to be able to compute the pe-
riod of substring X [j : i] in O(log2(i - j)) time. As
the preprocessing step we simply give labels to all sub-
strings of X of size 2 ~ 0 _< k < [loggJ such that
each distinct substring gets a distinct label. This can
be done in O(£ logg) time using [KMR72]. As the sec-
ond preprocessing step, we sort all substrings that are
given the same label according to their starting loca-
tion in X. This can be done using stable sorting in t ime
o (g log 2 g) for all labels of all lengths. Using these la-
bels one can compute the period of a substring S of size
i - j through the following observation. I f a substring
S of X has a period of length Ps then p x , the length of
the period of X , satisfies Ps >_ p x or P x >_ [S]. There-
fore if two identical substrings X [j - 2/l°gq -h : k]
and X [k - 2Uog iJ-h : k t] (which have identical labels)
overlap, then the period of X can not be within the range
{2 [l °g i j -h-1 -'F 1 , . . . , 2U°gq-h} .

Thus we can check for all c~ = [log i - j J - 1, . . . , 1, 0
whether S has a period of length in the range 2 ~ , . . . 2 ~ - 1 +
1 by finding the largest k < i - 2 ̀ ~-1 for which X [k -
2 ~ : k] = X[i - 2 ~' : i]. This is easily done in O(logg)
time by binary search on the sorted list for substrings
with label identical to that of X[i - 2 ~ : i]. Each

query for the period of a substring therefore takes time
O(log ~ g) in the worst case.

This combined with the iteration for computing d(i) 's
gives,

T h e o r e m 12 Given two sequences X a n d Y of length
g, there exists an O(glog 3 g) time algorithm to compute
d(X , Y) i f only character replacements and block rever-
sals are allowed.

R e m a r k . Our original version of this algorithm used
symmetric LCP; here, we provide a simpler algorithm
without using symmetric LCP. By a more sophisticated
algorithm, we can improve the running time to O(g log 2 g).

6 Discussion

We can extend our results to take into account linear
transform of blocks as well. Consider LCP parsing in
Section 3.1. In order to take care of block linear-transforms
in addition to block reversals, we replace each symbol

s [O- s[~ - ~]
S[i] as follows. Say s[i-1]-s[i-2l = x / y when com-
mon factors are removed. We use zllu in place of S[i]
at each iteration of symmetric LCP. We call this scaled
symmetric LCP. The core-blocks we obtain will have the
property that i f there is a block R that is a linear trans-
form o f Q fo r any constant x and (~, and Q is a core-
block, then R will also be a core-block. Other prop-
erties of symmetric LCP and cores can be proved for
scaled symmetric LCP and cores with appropriate mod-
ifications. I f we wanted to allow neither block reversals
or transforms, we use the vanilla LCP and cores from
[SV96]. I f we wanted to allow only linear transforms
and no block reversals, we use vanilla LCP using the
character transformation above. Full technical descrip-
tion will be given in the final version of this paper.

The basic problem still remains open: can we solve
the SNN problem without any block operations while
allowing only character edits? Our LCP based transfor-
mation does not seem to provide any insight into the edit
distance between two sequences when block operations
are disallowed: while the upper bound in Theorem 7 still
holds, the lower bound is no longer valid. Hence, a new
approach may have to be developed. Another interest-
ing direction is to design efficient algorithms for simple
sequence comparison problems with other block opera-
tions [LT96].

References

[AL+95] R. Agarwal, K. Lin, H. Sawhney and K. Shim.
Fast similarity search in the presence of noise,

423

scaling and translation in time-series databases.
Proc. 21st VLDB conf, 1995.

[CL90] W. Chang and E. Lawler, Approximate String
Matching in Sublinear Expected Time, Pro-
ceedings of IEEE Symposium on Foundations of
Computer Science, (1990).

[CP+00] G. Cormode, M. Paterson, S. C. Sahinalp and
U. Vishkin. Communication Complexity of Doc-
ument Exchange. Proc. ACM-S1AM Symp. on
Discrete Algorithms, 2000.

[CV86] R. Cole and U. Vishkin, Deterministic Coin
Tossing and Accelerating Cascades, Micro and
Macro Techniques for Designing Parallel Algo-
rithms, Proceedings of ACM Symposium on The-
ory of Computing, (1986).

[FI99] M. Farach-Colton and P. Indyk. Approxi-
mate Nearest Neighbor Algorithms for Haus-
dorff Metrics via Embeddings. Proc. IEEE
Symp. Foundations of Computer Science, 1999.

[G] GeIAssemble. http : . . staf fa .wi. mit. edu

/gcg/gelassemble. html.
[GD91] M. Gribskov and J. Devereux Sequence Anal-

ysis Primer, Stockton Press, 1991.
[198] P. Indyk. On Approximate Nearest Neighbors

in Non-Euclidean Spaces. Proc IEEE Symp on
Foundations of Computer Science, 1998, 148-
155.

[IM98] P. Indyk and R. Motwani. Approximate Near-
est Neighbors: Towards Remving the Curse of
Dimensionality. Proc. ACM Symp. on Theory of
Computing, 1998, 604-613.

[J97] J. Kleinberg. Two Algorithms forNearest Neigh-
bor Search in High Dimensions. Proc. ACM
Symp. on Theory of Computing, 1997, 599-608.

[KMR72] R. Karp, R. Miller and A. Rosenberg, Rapid
Identification of Repeated Patterns in Strings,
Trees, and Arrays, Proceedings of ACM Sym-
posium on Theory of Computing, (1972).

[KOR98] E. Kushilevitz, R. Ostrovsky and Y. Rabani.
Efficient search for approximate nearest neigh-
bor in high dimensional spaces. Proc. ACM Sym-
posium on Theory of Computing, 1998, 614-623.

[LT96] D. Lopresti and A. Tomkins. Block edit mod-
els for approximate string matching. Theoretical
Computer Science, 1996.

[SK83] D. Sankoff and J. Kruskal, Time Warps, String
Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison, Addison-
Wesley, Reading, Mass., 1983.

[LV89] G. Landau and U. Vishkin, Fast Parallel and
Serial Approximate String Matching, Journal of
Algorithms, 10, (1989): 158-169.

[Lev66] V.I. Levenshtein, Binary codes capable of cor-
recting deletions, insertions and reversals, Cy-

bernetics and Control Theory, 10(8):707-710,
1966.

[SV96] S. C. Sahinalp and U. Vishkin, Approximate
and Dynamic Matching of Patterns Using a La-
beling Paradigm, Proceedings of IEEE Sym-
posium on Foundations of Computer Science,
(1996).

[Se80] R Sellers, The Theory and Computation of Evo-
lutionary Distances: Pattern Recognition. Jour-
nal of Algorithms, 1, (1980):359-373.

[T84] W. E Tichy, The string-to-string correction prob-
lem with block moves. ACM Trans. on Computer
Systems, 2(4): 309-321, 1984.

[Uk83] E. Ukkonen, On Approximate String Match-
ing. Proceedings of Conference on Foundations
of Computation Theory, (1983).

424

