
Journal of Algorithms 41, 225–243 (2001)
doi:10.1006/jagm.2001.1172, available online at http://www.idealibrary.com on

The Complexity of Gene Placement

Leslie Ann Goldberg1, Paul W. Goldberg1, and Mike Paterson1

Department of Computer Science, University of Warwick, Coventry,
CV4 7AL, United Kingdom

Pavel Pevzner

Department of Computer Science, University of California,
San Diego, San Diego, California 92093

Süleyman Cenk Sahinalp2

Department of Electrical Engineering and Computer Science, and Center for
Computational Genomics, Case Western Reserve University, Cleveland, Ohio 44106

and

Elizabeth Sweedyk

Department of Computer Science, Harvey Mudd College,
Claremont, California 91711

Received July 23, 1999

We focus on algorithmic problems related to deriving gene locations on DNA
sequences of closely related species by using comparative mapping data. Conven-
tional genetic mapping generates intervals on the DNA sequence of given species
for potential gene positions. The simultaneous analysis of gene intervals in related
species, e.g., human and mouse, may eliminate some of the ambiguities and lead to
better estimates of gene locations. We address the problem of eliminating the ambi-
guities in gene orders by means of minimizing the number of conserved regions
among the species. This is equivalent to the problem of choosing gene coordi-

1 Partially supported by the IST Programme of the EU under contract number IST-1999-
14186 (ALCOM-FT) and RAND-II (Project 21726), by EPSRC Grant GR/L60982, and by
NATO Grant CRG-972175.

2 Supported in part by a grant from Charles B. Wang Foundation.

225

0196-6774/01 $35.00
 2001 Elsevier Science

All rights reserved

226 goldberg et al.

nates (gene placement) that satisfy the genetic mapping constraints and minimize
the breakpoint distance between genomes. We first show that the gene ordering
problem is hard: there is no polynomial-time approximation scheme unless P = NP,
even under the restrictions that: (1) the order of genes in one of species is known,
or (2) at most two intervals overlap at any location on the map of any of the
species. Then we provide two polynomial-time algorithms under restriction (1)
above; the first approximates the problem within a factor of 3, and the second
exactly solves the problem under the additional restriction that (3) no more than
O��log n�/�log log n�� intervals overlap at a location on the map of any of the
species. We also prove the tractability of the general problem when there is a sin-
gle conserved region (i.e., when there exists a gene placement resulting in identical
gene orders). 2001 Elsevier Science

1. INTRODUCTION

Let G1� � � � �Gn be a set of known genes (or markers), which occur in the
DNA of two distinct species, e.g., human and mouse. For each species, we
are given partial information about the sequence in which the genes occur
along its DNA. The goal is to construct, for each species, a sequence in
which the genes occur (i.e., a permutation of G1� � � � �Gn) that is consis-
tent with the partial information and minimizes the number of conserved
regions between the permutations assigned to the two species. A “conserved
region” between two permutations �1 and �2 of G1� � � � �Gn is defined
to be a maximal substring of �1, which either occurs in �2 or occurs
in reverse order in �2. For example, if �1 = G1G5G2G3G7G8G4G6 and
�2 = G1G2G3G5G6G4G8G7 then the maximal conserved regions between
�1 and �2 are �G1�� �G5�� �G2G3�, and �G7G8G4G6�. Thus, there are four
conserved regions between �1 and �2.

The number of conserved regions between two genomes is equal to the
breakpoint distance between genomes plus one. If two genes are adjacent
in �1 but not in �2, they determine a breakpoint in �1. For example,
�1 = G1�G5�G2G3�G7G8G4G6 has three breakpoints breaking �1 into four
conserved regions. The breakpoint distance between �1 and �2 is defined
as the number of breakpoints in �1 (equal to the number of breakpoints
in �2). Breakpoint distance and breakpoint phylogenies have been studied
in a number of papers [3, 4, 16].

For each species, the partial information that is available is essentially,
for each gene Gi, an interval along the DNA of the species in which Gi may
occur. The biological motivation for this assumption is given in Section 1.1.
Each interval may be viewed abstractly as an interval on the real line, and
we use that representation later in the paper (specifically, in the negative
results). The idea is that each gene must be placed somewhere in its inter-
val. (Although the intervals are usually statistical confidence intervals, here

the complexity of gene placement 227

we make no preference for locating a gene toward the center of the inter-
val.) Once the genes are placed, the real line is forgotten, and only the
sequence of genes remains. This version of the problem, however, contains
geometrical information that is irrelevant to the combinatorial problem. We
continue by giving a combinatorial description of the constraints which we
use in our algorithms. For the sake of simplicity, in this paper we consider
unichromosomal genomes but the results can be generalized for multichro-
mosomal genomes.

If the endpoints of the intervals are arranged in order along the real
line, then a sequence of consecutive left-hand endpoints may be treated
as being located at a common point, and the combinatorial constraints are
not changed. (A similar claim holds for consecutive right-hand endpoints.)
As a result, the following combinatorial information can be easily derived.
Formally, the partial information consists of a partition of the set of genes
�G1� � � � �Gn	 into m “opening sets” O1� � � � � Om and another partition of
�G1� � � � �Gn	 into m “closing sets” C1� � � � � Cm. These partitions have the
property that, for every r ∈ �1� � � � �m	, Cr ⊆ O1 ∪ · · · ∪ Or . (The interval
for every gene is “opened” before it is “closed”.) The partial information
that the opening and closing sets provide is as follows: If a gene Gh is in
opening set Oa and in closing set Cb (where, by definition, a ≤ b) then gene
Gh must be placed in the sequence after all of the genes in C1 ∪ · · · ∪ Ca−1
and before all of the genes in Ob+1 ∪ · · · ∪ Om.

Definition 1. A gene placement for a set of genes that are common
to a pair of species is a pair of total orders for each of the given partial
orders. The gene placement problem that we consider here is the problem
of finding a gene placement so as to minimize the number of the conserved
regions between the genomes.

We note in passing that it is straightforward to compute the number
of conserved regions (or breakpoint distance) associated with two given
total orders. We continue by classifying the gene placement problem under
consideration here according to the “depth” of problem instances.

Without loss of generality, we can assume that every opening set Or and
every closing set Cr is nonempty. (If Cr is empty, then it can be deleted and
Or and Or+1 can be merged without changing the set of sequences which the
partial information allows. Similarly, if Or is empty, then it can be deleted
and Cr−1 and Cr can be merged.) Therefore, we can assume m ≤ n. We
define Xr = �O1 ∪ · · · ∪ Or	 ∩ �Cr ∪ · · · ∪ Cm	 . Thus, Xr is the set of all
genes which could possibly be placed in the sequence after all of the genes in
C1 ∪ · · · ∪Cr−1 and before all of the genes in Or+1 ∪ · · · ∪Om. We define the
depth of the species (really, the depth of the partial information provided
for the species) to be maxr �Xr � and we define the depth of the problem
instance to be the minimum of the depths of the two species. (Returning to

228 goldberg et al.

the “intervals” discription, the depth of a species is the maximum number
of intervals which overlap at any single point.) Thus, a depth-1 species is a
species for which the partial information completely specifies the sequence
of genes. (By definition, Xr contains both Or and Cr , so since �Xr � = 1, Or

and Cr contain the same single gene.)
The depth-d gene placement problem is the problem of minimizing

the number of conserved regions, given a depth-d problem instance.
A polynomial-time approximation scheme (PTAS) for the depth-d gene
placement problem is an algorithm that takes the problem instance and
a parameter ε and outputs a gene placement such that the ratio between
the number of conserved regions in the output and the optimal number of
conserved regions is at most 1 + ε. The running time of the algorithm may
depend arbitrarily on ε, but must be bounded from above by a polynomial
in the size of the problem instance. In this paper, we prove the following
results about the depth-1 gene placement problem.

Theorem 1. There is no polynomial-time approximation scheme for the
depth-1 gene placement problem unless P = NP.

Theorem 2. We give a polynomial-time algorithm which approximates the
depth-1 gene placement problem within a factor of 3.

Theorem 3. We give a polynomial-time algorithm which exactly solves the
special case of the depth-1 gene placement problem in which the depth of one
species is 1 and the depth of the other species is O��log n�/�log log n��.

Next, we show that the depth-2 gene placement problem is much harder
than the depth-1 gene placement problem. (Compare the following theorem
with Theorem 3.)

Theorem 4. There is no polynomial-time approximation scheme for the
gene placement problem with the restriction that both species have depth at
most 2 unless P = NP.

Finally, we show that some questions about the arbitrary-depth gene
placement problem are tractable.

Theorem 5. We give a polynomial-time algorithm which determines
whether the solution to the (arbitrary depth) gene placement problem is 1
(that is, whether it is possible to have only one conserved region).

1.1. Biological Motivation

Waardenburg’s syndrome is an inherited genetic disorder resulting in
hearing loss and pigmentary dysplasia. Ten years ago genetic mapping and
some luck narrowed the search for the Waardenburg’s syndrome gene to
human chromosome 2 but the exact localization remained unclear. There

the complexity of gene placement 229

was another clue that directed attention to chromosome 2. For a long time,
breeders scrutinized mice for mutant characteristics and one of these, des-
ignated splotch, with patches of white spots has been considered a possible
homolog to Waardenburg’s syndrome. Through breeding (which is easier
in mice than in humans) the splotch gene was mapped to mouse chromo-
some 2. As gene mapping proceeded it became clear that the position of
the Waardenburg’s syndrome gene on human chromosome 2 can be derived
through the human–mouse comparative genetic map. Comparative genetic
maps show the groups of genes that are linked to one another in both
species. Therefore, mapping a gene in mice immediately gives a clue for a
location of the homologous human gene.

However, the difficulty is that the conventional genetic mapping gen-
erates intervals for potential gene positions rather than gene coordinates.
These intervals may overlap, differ in size, and even be in conflict with
each other, thus leading to ambiguities in assigning gene orders. The simul-
taneous analysis of gene intervals in related species (e.g., humans and mice)
may eliminate some of the ambiguities and lead to better estimates of gene
locations.

Although rearrangements of gene orders have been extensively
studied in the computer science literature (see, for example, [1� 2� 5–
7� 9� 10� 12� 16� 18], and a review of the area in [15]) the problem of
generating gene orders from experimental data remained largely unex-
plored. In particular, Hannenhalli and Pevzner [7] remarked that deriving
gene orders is a nontrivial task since the map accuracy in humans is signif-
icantly lower than in mice and for many closely located genes in humans
the relative ordering is still unknown. For many closely located genes in
humans the relative ordering will remain unknown until the final sequences
of human and mouse genomes become available [19� 20].

This problem forced Hannenhalli and Pevzner [7] to make a number
of arbitrary decisions while deriving gene orders in humans and mice.
Sankoff et al. [17] described a heuristic approach to identification of con-
served regions that proved to be useful in detecting potential errors in
genetic maps.

Gene mapping usually estimates the distance between two markers by
a statistical procedure. The confidence interval for this distance may vary,
depending on many factors like the amount of available genotyping data.
Biologists attempt to merge the distance constraints into the overall map
and to resolve the potential conflicts. Letovsky and Berlyn [11] developed
CPROP, a program that integrates mapping information from numerous
sources. Nadkarni [13] has developed Mapmerge, another program that
synthesizes information about gene orders from multiple sources. Biolo-
gists ideally would like to assign a genomic coordinate to every marker.
However, in view of genetic mapping uncertainties, this is frequently impos-

230 goldberg et al.

sible and coordinate-based representations have not been traditionally used
by the human mapping community. In particular, the map information in
the genome database uses a formalism that does not lend itself to direct
translation to coordinates. The absence of coordinate-based genetic maps
was the cause of difficulties Hannenhalli and Pevzner had while deriving
tentative gene orders in men and mice in 1995 [7].

This paper addresses some algorithmic problems related to deriving gene
orders from comparative mapping data. In the simplest case we assume that
the genetic map is already assembled and every gene is assigned an interval
of potential coordinates. We use such genetic maps from two species to
eliminate the ambiguities in gene orders and to estimate the number of
conserved groups in the species.

2. TECHNICAL DETAILS

The proofs of each of Theorems 1 to 5 are given in each of the following
sections. We prove the positive results first, followed by the negative results
(Theorems 1 and 4).

2.1. Proving Theorem 2

We give a polynomial-time algorithm which approximates the depth-1
gene placement problem within a factor of 3. Let I be an instance of
the depth-1 gene placement problem. Let π denote the placement of the
depth-1 species. We will use O1� � � � � Om and C1� � � � � Cm to denote the
(nonempty) opening and closing sets of the other species (species S). We
start with the following observation, which allows us to do useful prepro-
cessing on the problem instance I.

Observation 6. If G is in Oa ∩ Cb and G′ is a gene in Oa′ ∩ Cb′ which
is adjacent to G in π then, without loss of generality, either a < a′ and b < b′

or a > a′ and b > b′.

Proof. Suppose that a ≤ a′ and b′ ≤ b and that π ′ is a gene placement
for S. Note that there is a gene placement π ′′ for S which is as good as π ′

and has G and G′ adjacent. (If G and G′ are not adjacent in π ′ then G
can be moved next to G′ without creating a new conserved region.) Thus,
the problem instance can be replaced by one in which gene G is deleted
from both species. Once a placement for S − �G	 has been found it can be
extended to a placement for S by inserting G next to G′.

Notation. For any gene H ∈ C1, let forward�H� be the suffix of π which
starts at gene H and let prefix+�H� denote the longest prefix of forward�H�
which is a prefix of a feasible gene placement for S. Let backward�H� be

the complexity of gene placement 231

the substring formed by starting at gene H in π and proceeding back to
the beginning of π. (That is, backward�H� is the reversal of the prefix of π
which ends at H.) Let prefix−�H� denote the longest prefix of backward�H�
which is a prefix of a feasible gene placement for S.

In what follows, when we apply set-theoretic operators to these strings,
we are treating them as the sets of their elements.

Observation 7. Given a problem instance including a gene H, it is
straightforward to identify (in polynomial time) the strings forward�H� and
backward�H�.

The 3-approximation algorithm is as follows. We assume that before each
(recursive) call to the algorithm we preprocess the problem instance to
ensure that the opening and closing sets are nonempty (see the Introduc-
tion) and that the instance is consistent with Observation 6.

1. If the input is the trivial problem instance with no genes then
output the empty gene placement. If S consists of a single opening set and
a single closing set then output π.

2. Otherwise, if �C1� ≥ 2 then let P be a sequence consisting of the
genes in C1 (in any order). Let I ′ be the subinstance formed by removing
the genes in P from both species. The output consists of P followed by a
(recursively generated) 3-approximation for I ′.

3. Otherwise, let C1 = �H	 and let O∗
1 be the set O1 − �prefix+�H� ∪

prefix−�H�	. If O∗
1 = � then let P consist of prefix+�H� followed by

prefix−�H� − �H	. Let I ′ be the subinstance formed by removing the
genes in P from both species. The output consists of P followed by a
(recursively generated) 3-approximation for I ′.

4. Otherwise, C1 = �H	 and let O∗
1 is nonempty. Let j be an integer

which is as large as possible, given that for all k < j�O∗
1 ∩ Ck = �. Let G

be any element of O∗
1 ∩ Cj . Let P consist of G followed by prefix+�H� fol-

lowed by prefix−�H� − �H	. Let I ′ be the subinstance formed by removing
the genes in P from both species. The output consists of P followed by a
(recursively generated) 3-approximation for I ′.

It is easy to see that the algorithm terminates after at most n itera-
tions, since I ′ has fewer genes than I. The theorem follows from the fol-
lowing lemma, which implies that if the algorithm correctly generates a
3-approximation for I ′ then it correctly generates a 3-approximation for I.
For any problem instance I ′′, the notation OPT(I ′′) denotes the optimum
(minimum) number of conserved regions that can be achieved for the prob-
lem instance.

232 goldberg et al.

Lemma 8. In Cases 2–4, there is a feasible gene placement for I which
has P as a prefix. The number of conserved regions in P (with respect to the
depth-1 gene) is at most 3�OPT�I� − OPT�I ′��.

Proof. Case 2: Clearly, C1 ⊆ O1. Thus, there is a feasible gene place-
ment for I which has P as a prefix. By Observation 6, no two genes in O1 are
adjacent in π. Thus, in any gene placement, at least �C1� − 1 of the genes
in C1 are in singleton conserved regions. Thus, the number of conserved
regions in P is �C1� and OPT�I� − OPT�I ′� is at least �C1� − 1.

Case 3: Since there is a feasible gene placement with prefix prefix+�H�
and one with prefix prefix−�H�, there is one with prefix P . P contains at
most two conserved regions. However, any feasible solution has a conserved
region contained in P (by Observation 6, any gene placed before H is a
singleton), so OPT�I� − OPT�I ′� is at least 1.

Case 4: As in Case 3, there is a feasible gene placement with prefix P .
Also, P contains at most three conserved regions. We claim that there exists
an optimal gene placement for S which has at least one of its conserved
regions contained in P , implying that OPT�I� − OPT�I ′� ≥ 1. The claim is
clearly true if there exists an optimal gene placement for S in which the
conserved region containing H is a substring of prefix+�H� or a substring
of prefix−�H�.

Suppose alternatively that every optimal gene placement for S has H
contained in a conserved region which is a proper superstring of prefix+�H�
or prefix−�H�. Let π ′ be such a gene placement and let � be the conserved
region of π ′ containing H. Without loss of generality, suppose that � is a
superstring of prefix+�H�. Let j′ be the minimum integer such that Cj′ is not
contained in prefix+�H� and every element in prefix+�H� is in O1 ∪ · · · ∪Oj ′

but some element in � is in Oj′+1 ∪ · · · ∪ Om. Since � is contained in a
feasible solution, Cj′ ⊆ O1. Furthermore, every member of Cj′ must precede
� in π ′. By Observation 6, each of these is in a singleton conserved region
in π ′. We now have two cases. If Cj′ contains an element of prefix−�H�
then this element (and therefore its conserved region) is in P . Otherwise,
Cj′ contains an element of O∗

1 . The minimality of j′ implies that j ≥ j′

(otherwise prefix+�H� would be shorter). Thus, j = j′, so G is a conserved
region of π ′ and therefore P contains a conserved region of π ′.

2.2. Proving Theorem 3

We give a polynomial-time exact algorithm for the special case of the
depth-1 gene placement problem in which the depth of one species is
1 and the depth of the other species (which we call species S) is b =
O��log n�/�log log n��. Let O1� � � � � Om and C1� � � � � Cm be the opening and
closing sets of S. As before, let Xr = �O1 ∪ · · · ∪ Or	 ∩ �Cr ∪ · · · ∪ Cm	,
where �Xr � ≤ b. (Let Xm+1 = �.) For r ∈ �0� � � � �m	, for any Yr+1 ⊆ Xr+1,

the complexity of gene placement 233

and G ∈ Cr ∪ Yr+1, let Pr�Yr+1�G� be an optimal gene placement for
species S (one with a minimum number of conserved regions between it
and the gene placement of the other species) given that

• we ignore all genes other than those in C1 ∪ · · · ∪ Cr ∪ Yr+1 (i.e., we
remove all other genes from both species) and

• we only consider gene placements which end in gene G.

We will show how to compute the placements Pr�Yr+1�G� in polynomial
time by dynamic programming.

First, observe that there are at most 2b choices of Yr+1 and at most 2b
choices of G. Second, observe that if Yr+1 ⊆ Xr then Cr ∪ Yr+1 ⊆ Xr , so
Pr�Yr+1�G� = Pr−1�Cr ∪ Yr+1�G�. Third, suppose that Yr+1 �⊆ Xr . Let H
be a fixed gene in Yr+1 ∩Or+1. Now for every

• Yr ⊆ Yr+1 ∩Xr − �G	,

• G′ ∈ Cr−1 ∪ Yr , and

• permutation π of �Cr ∪ Yr+1	 − Yr − �H	 − �G	,

let P�Yr�G
′� π� be the gene placement formed by taking Pr−1�Yr�G

′�
followed by H followed by π followed by G. Clearly, we can choose
Pr�Yr+1�G� by taking an optimal placement P�tr�G′� π� (over all choices
of Yr�G

′, and π). Furthermore, there are at most 2b choices for Yr , at most
2b choices for G′, and at most �2b�! choices for π. Since �2b�! = nO�1� the
algorithm runs in polynomial time.

2.3. Proving Theorem 5

We give a simple polynomial-time algorithm which determines whether
the solution to the (arbitrary depth) gene placement problem is 1 (that is,
whether it is possible to have just one conserved region). It suffices to give
polynomial-time algorithm (such as the following algorithm) which deter-
mines whether there exists a single gene placement π which is consistent
with the partial information �O1� � � � � Om and C1� � � � � Cm� provided for the
first species and the partial information (O′

1� � � � � O
′
m′ and C ′

1� � � � � C
′
m′) pro-

vided for the second species. We claim that the following method finds a sin-
gle conserved region that is not reversed between the species (if one exists).

1. If O1 ∩O′
1 = � then there is no such π.

2. Otherwise, pick any G ∈ O1 ∩O′
1 and let G be the first gene in π.

Recursively find the rest of π.

Before recursing in the second step of the algorithm, we delete any empty
opening and closing sets and merge adjacent opening sets as described in
Section 1.

234 goldberg et al.

To justify the above method, note that if the partial information is consis-
tent with a single conserved region, then that conserved region must start
with an element of O1 ∩ O′

1 (assuming that the conserved region is not
reversed between the two species). Then if an arbitrary element O1 ∩ O′

1
is used, that does not then make the information on the remaining genes
inconsistent with a single conserved region.

We may then search for a conserved region that is reversed between the
species, by reversing the sequence of opening and closing sets of one of the
species (and deeming the opening sets to be closing sets and vice versa),
then repeating the above method.

2.4. Proving Theorem 1

We show that there is no polynomial-time approximation scheme for the
depth-1 gene placement problem unless P = NP. We start by defining the
3-bounded max-2SAT problem. An instance (or formula) � of 3-bounded
max-2SAT consists of a set of clauses �C1� � � � � Ck	 where each Ci is the
disjunction of two literals over a set var��� of boolean variables. Each literal
occurs in at most three clauses. The goal is to find an assignment of values
to the elements of var��� which maximizes the number of clauses that are
satisfied. We will use the following fact from [14].

Fact 9. There is no polynomial-time approximation scheme for 3-
bounded max-2SAT unless P = NP.

We will prove Theorem 1 by showing that a polynomial-time approxima-
tion scheme for the depth-1 gene placement problem could be turned into
a polynomial-time approximation scheme for 3-bounded max-2SAT.

Given an instance � of 3-bounded max-2SAT, we construct an instance
� of the depth-1 placement problem. For each variable x, � contains a set
of genes ��x� which has two distinct optimal placements. For two boolean
variables x� y ∈ var���� ��x� and ��y� are designed to interact if and only
if x and y appear appear in a clause C of �. Suppose this happens in a
feasible solution of � that has one of the optimal arrangements for each
of ��x�� ��y�. Then we will find that a conserved region will be saved if
and only if the gene arrangements in ��x� and ��y� encode a satisfying
assignment of C. One conserved region is saved for each clause satisfied.
Given a feasible solution S��� for �, let S���x�� denote S��� restricted
to ��x�. We cannot generally assume that because S��� is approximately
optimal, each S���x�� is one of the two optimal solutions to ��x�. How-
ever, we show how to construct an alternative solution S′��� from S��� in

the complexity of gene placement 235

polynomial time, such that

• S′��� has no more conserved regions than S���,
• S′���x�� (which denotes S′��� restricted to ��x�) does encode one

of the truth values (hence S′���x�� is optimal).

Given such a construction, it just remains to derive an approximation
ratio 1 − ε for 3-bounded max-2SAT which would be associated with a
hypothetical approximation ratio 1 + δ for gene arrangement, such that
ε → 0 as δ → 0.

In this section we will work with the alternative formulation of the gene
placement problem which is mentioned in the Introduction. Each gene will
be described by an interval along the real line. Each gene must be placed
somewhere in its interval. Once the genes are placed, the real line is for-
gotten, and only the sequence of genes remains. In our diagrams, we will
denote gene intervals by vertical lines. We will displace the vertical lines
sideways for readability (to allow intervals to be distinguished). A sequence
of consecutive (in the depth-1 ordering) but nonoverlapping gene intervals
is depicted by line segments that lie on a common line. Genes are denoted
by the symbols • or ◦ (the two symbols are used to show two alternative
gene placements in one diagram), and feasible solutions are depicted by
placing a gene symbol on each vertical line. A gene symbol without a line
depicts a gene whose position is fixed, that is, a gene whose interval starts
and stops at the same point. Without loss of generality, we assume that the
order of placement of the depth-1 gene is G1� � � � �Gn.

2.4.1. Representing a Boolean Variable

For x ∈ var���� ��x� uses 27 genes, plus an additional 13 separator
genes as described later. First there are two sequences of length 15 and 3.
Let X1� � � � �X15�H1� H2� H3� denote these sequences. The 13 separator
genes will prevent conserved regions from containing more than two genes.
Observe that when gaps between two different pairs of consecutive gene
intervals coincide, then only one of those pairs may form a conserved
region. The alignment of the gaps is as shown in Fig. 1. We will obtain
at most eight pairings of adjacent genes from these sequences, consisting
of either �H1�H2� or �H2�H3�, and seven alternating pairings in the Xi’s.
Assuming that one of these optimal placements has been made, associate
with “true” the one that joins H1 with H2, and with “false” the one that
joins H2 and H3.

We next introduce some genes to ��x� which “reinforce” the optimality
of joining alternate pairs in the X-sequence. Introduce three sequences of
three consecutive genes, R1� R2� R3 and R′

1� R′
2� R′

3 and R′′
1� R′′

2� R′′
3 , with

gaps between consecutive genes aligned as in Fig. 1. Observe that provided

236 goldberg et al.

FIG. 1. Representing a variable: Vertical lines indicate intervals associated with individual
genes. The sets of • and ◦ symbols indicate the two optimal placements of genes. C�C ′� C ′′

indicate gaps between consecutive genes associated with a clause containing the unnegated
variable, �C� �C ′� �C ′′ gaps for clauses containing the negated variable.

alternate pairing are made with genes in the range X2� � � � �X6, then we
can pair either �R1� R2	 or �R2� R3	 and similarly for the reinforcers R′

and R′′.
The construction uses a number of sequences of consecutive genes (X’s,

R’s, R′’s, R′′’s, H’s), constrained to lie in intervals that are separated by
gaps. In all intervals in these sequences, other than the interval at each
end, we will additionally place a gene whose position is fixed, and which
is cut off from its neighbors. The effect of these extra genes is to prevent
any feasible solution from having conserved regions of length more than 2.
These extra genes are omitted from the descriptions, for simplicity. Note
that these separators for the X’s also have the effect of separating the H’s
and the reinforcers in the same way.

The total number of genes in the above description of ��x� (for
x ∈ var���) is 40. The extra 13 separators occur in the intervals for
x2� � � � �X14. A set ��x� is constructed for each x ∈ var���, and they are

the complexity of gene placement 237

placed consecutively on the real line. For x� y ∈ var���, if x �= y then the
genes in ��x� are placed so as not to overlap the genes in ��y�.

2.4.2. Representing a Clause

We have observed that ��x�, as described above, has two optimal gene
placements. Here we assume that for each x ∈ var��� one or another of
these gene placements has been used, and we add some more genes in
such a way that a conserved region is saved for each clause satisfied by the
truth assignment represented by the S���x�� placements. In the next section
we justify our assumption of local optimality for the S���x�� placements
(required for representing a truth assignment).

The two optimal placements do not use all the gaps between consecutive
genes in the X-sequence, and consequently, if other gaps between consecu-
tive genes happen to coincide with them, we may make further connections
across these gaps without cost. In particular, consider the gaps �X3�X4�,
�X4�X5�, �X7�X8�, �X8�X9�, �X11�X12�, �X12�X13�. (All the others have
connections across them, if not by the X’s then by the H’s, R’s, R′’s, or
R′′’s.) Only an alternating subsequence of three of these six have connec-
tions across them in an optimal S���x��.

Recall that the placement connecting H1 and H2 is associated with
true, and this placement does not use the gaps �X3�X4�, �X7�X8�, and
�X11�X12�. Likewise the false assignment does not use �X4�X5�, �X8�X9�,
and �X12�X13�.

For x� y ∈ var���, suppose ��x� precedes ��y� on the line. A clause
containing x and y is represented by three consecutive genes K1�K2�K3,
where the gap �K1�K2� coincides with a gap in ��x� which is unused by
the assignment to x satisfying the literal containing x in the clause, and
the gap �K2�K3� coincides with a similarly chosen gap in ��y�. Each gap
used by a clause is not used by any other clause, but recall that there are
at most three literals of each kind in �, so we have enough clause gaps in
each ��x�.

Each clause uses three genes. It is not necessary to include an explicit
separator gene as there will always be a fixed gene from some X-interval
within K2’s interval.

2.4.3. Conversion from S��� to S′���
Given an approximately optimal gene placement S���, we cannot of

course assume that for all x ∈ var���, S���x�� is locally optimal, hence
representing a truth value. We need to prove the following claim.

238 goldberg et al.

Claim. Given a feasible solution S���, we can convert it in polynomial
time to an alternative feasible solution S′���, where

• the number of conserved regions is not increased, and

• the genes for each variable encode one of the truth values.

The conversion from S��� to S′��� works by performing local optimiza-
tion on ��x� for each x ∈ var���. We do not rearrange any of the clause-
encoding genes. In the process, we may make connections in a ��x� which
breaks a connection between a pair of clause-encoding genes; however, it
is argued that when this happens, the local optimization gains at least as
many “makes” as it loses in “breaks.”

For each x ∈ var���, let C� �C�C ′� �C ′� C ′′� �C ′′ denote the six clause gaps
in ��x�, in the order in which they appear as we traverse � from one end
to the other. Consider the pairs �C� �C�, �C ′� �C ′�, and �C ′′� �C ′′�.

We perform the local optimization in stages. First, if there are three
successive open gaps in the X-sequence, we make a connection across the
middle gap and, if necessary, break an existing connection using the gap.
Secondly, if the gaps corresponding to D and �D are both open, where D ∈
�C�C ′� C ′′	, then the neighboring gaps must both be being used by the X’s,
and therefore neither is used by the corresponding reinforcer, R, R′, or R′′.
We exchange either one of these two connections with its neighboring gap
in C or �C and make the new connection in the corresponding reinforcer.
We have introduced one extra make in ��x� at the possible cost of one
break in clause.

The final stage to produce S′��� is as follows. Exactly one of each adja-
cent pair of gaps corresponding to clauses is now used by the X-sequence.
The effect of any remaining gaps is just to change the “parity” from one
pair to the next, allowing perhaps a clause in one pair to be “satisfied” by
the positive literal and a clause in another pair to be satisfied by the nega-
tive literal. In such a case we select the parity of the majority of the clause
gap pairs and use the corresponding alternation of open and closed gaps.
Since the alternating sequences are the only ways to achieve eight makes
within the X- and H-sequences, such a change gains at least one make at
the expense of at most one break in a clause.

The result of performing these local optimizations on each ��x� is S′���.

2.4.4. Approximation Ratios

Suppose � has k clauses and n variables. We know that n ≤ 2k, n ≥ k/6.
let m be the maximum number of clauses satisfiable. We know that k/2 ≤
m ≤ k. (It is easy to satisfy k/2 clauses by a simple greedy algorithm.) In
particular, n ≤ 4m and k ≤ 2m.

the complexity of gene placement 239

� has 40n+ 3k genes, 40 for each ��x� and 3 for each clause. The number
of conserved regions equals the number of genes minus the number of
pairings that can be made. From the previous section, the optimal (largest)
number of pairings is the number of pairings per (locally optimal) S′���x��
times the number n of variables, plus the number of satisfied clauses, which
is 11n+m. The optimal (minimum) number of conserved regions is

40n+ 3k− �11n+m� = 29n+ 3k−m�

We know that a feasible solution with 29n+ 3k−m′ conserved regions (for
m′ ≤ m) can be used to derive an assignment satisfying m′ clauses. Suppose
we can approximate the number of conserved regions within 1 + δ. So we
can find a solution within �1 + δ� �29n+ 3k−m� conserved regions. This
is equal to

29n+ 3k−m+ δ�29n+ 3k−m�
≤ 29n+ 3k−m+ δ�116m+ 6m−m�
= 29n+ 3k− �1 − 121δ�m�

So we could then approximate 3-bounded max-2SAT within 1 − 121δ.
Hence a PTAS for the minimum number of conserved regions would give
a PTAS for 3-bounded max-2SAT.

2.5. Proving Theorem 4

We show that there is no polynomial-time approximation scheme for the
gene placement problem with the restriction that both species have depth
at most 2, unless P = NP.

As in Section 2.4, we proceed by reduction from 3-bounded max-2SAT.
We use some notation from Section 2.4.

2.5.1. Representing a Boolean Variable

We begin by defining a cyclic structure as shown in Fig. 2.
Define a 7-unit,U , to be an ordered set of seven genes �a� a′� b′� b� k� k′� k′′�

which in one species (which we refer to as U ’s species) has a, a′, b′, b
at fixed consecutive locations, with k constrained to be adjacent to a, k′

adjacent to b, and k′′ adjacent to either or both of a′� b′. (See Fig. 2.) In
the other species, k� k′′� k′ are fixed and consecutive.

Define a q-cycle (where q is a positive even integer) to be a sequence S
of q 7-units, S = �U1� � � � � Uq�, where for U = Ui, U ′ = U�i+1�mod q we have

• the species of U is not the same species as the species of U ′,

• the third and fourth genes in U are the second and first in U ′, and

• the separate 7-units do not overlap each other.

240 goldberg et al.

Figure 2 depicts a 6-cycle. The nonfixed genes have been placed so that,
for each 7-unit, two of them form a conserved region. (So �k� k′′� are
paired in Fig. 2.) We may also allow alternate pairs from the sequence
�a� a′�� �b� b′�� �c� c′�� � � � to form conserved regions, for a total of 3q/2 con-
served regions of size 2.

Observe that, regardless of the size of q, there exist two optimal place-
ments of the union of the last three genes of each Ui, for 1 ≤ i ≤ q. We
cannot make more than 3q/2 pairings, and 3q/2 pairings can only be made
by alternating the orientations of the 7-units.

For each x ∈ var���, let c�x� denote the number of clauses in � in which
x or its negation appears. ��x� will be a 6c�x�-cycle. The total number of
genes in ∪x∈var�����x� is 6 · 7 · k/2 = 21k genes. We associate the truth
settings of x with the two optimal arrangements of the genes in ��x�.

FIG. 2. Depth 2 gene arrangement: a cyclic structure with two optimal solutions. The alter-
native optimal solution is obtained by moving all the nonfixed genes to the opposite ends of
their intervals. (Note that only two of the six 7-units are depicted in full; the unlabeled genes
whose positions are not fixed correspond to sequences of three consecutive fixed genes (not
shown) on the other species.)

the complexity of gene placement 241

2.5.2. Representing a Clause

We next allow pairs of cycles to interact so that additional pair-
ings of genes may be affected whenever either cycle encodes a cho-
sen truth value, corresponding to satisfaction of a clause in �. For a
clause Ci let x� y be the variables it contains. Choose two consecutive
7-units in ��x� and ��y� and make them adjacent on each species, but
with a gene X between them on each species, and on one species an
additional gene x which is constrained to be adjacent to X (and on
the other species x is isolated). This will allow X to pair with one of
the first four genes in the 7-units, provided that it encodes the correct
truth value. See Fig. 3. Let �a� a′� b� b′� k� k′′� k′�� �b� b′� c� c′� l� l′′� l′� ∈
��x�� �C�C ′�D�D′�K�K′′�K′�� �B�B′� C�C ′� L�L′′� L′� ∈ ��y� be the 7-
units. In Fig. 3, X may be paired with either C or b, provided at least one
of ��x� and ��y� has an appropriate truth value.

It is important to note the following about this method for representing
a clause containing x, say. The choice of which pair of consecutive 7-units
from ��x� is not constrained by whether the literal contains x or ¬x. If we
decide to use Ui�Ui+1 from ��x�, then we can negate x in the clause being
represented by reversing their directions.

Next we want to reinforce the optimality of an alternating sequence of
orientations of 7-units, so that we can perform local optimization on every
��x� and obtain a S′��� which has no more conserved regions than S���.
Divide the clauses within which x appears into at most three sets S1� S2� S3�
each of which is either a singleton set or contains a clause with x and a
clause with ¬x. So we use up to 4 7-units for each Si, and we make these
7-units consecutive in the cycle representing ��x�. Let Ui�Ui+1�Ui+2�Ui+3
be these 7-units. For each Si we then add a tautologous clause that repre-
sents x ∨ ¬x, and uses Ui−2�Ui−1 for x and Ui+4�Ui+5 for ¬x. Hence ��x�
needs at most 24 7-units (eight for each Si).

2.5.3. Conversion from S��� to S′���
As in section 2.4.3 we want to do the following in polynomial time. Given

a feasible solution �, convert it to a feasible solution �′ in which

• there are least as many pairings, and

• alternate 7-units have alternate orientations.

We do not rearrange the clause-representing genes. The set of 7-units
used for a set Si as defined above is optimized by making the orientations
of the 7-units satisfy one clause but not the other. For each Si in a ��x�,
observe whether the clauses give it a bias toward representing true or false.
Then take the majority vote of all three, by analogy with Section 2.4.3.
When one is overruled, we lose a conserved region through failure to satisfy

242 goldberg et al.

FIG. 3. Depth 2 gene arrangement: a satisfied clause allows an additional pairing to
be made, namely �X�C�. If the ��x� containing a� a′� b′� b had its other optimal arrange-
ment, then we could choose between �X�C� and �X�b�. (Gene x prevents both pairings
simultaneously.)

its clause, but we gain one through recovery of the alternating pattern of
orientations of the 7-units.

2.5.4. Approximation Ratios

Suppose � has k clauses and n variables, of which m are satisfiable. Each
appearance of a literal uses a tautological clause, so that 3k clause gadgets
in total are used in �. Therefore 6k 7-units are used, 3k on each species,
for a total of 27k genes in �. The number of pairings that can be made is
1.5 for each 7-unit, plus 2k for the tautological clauses, plus m. Hence the
optimal number of conserved regions is 27k− �9k+ 2k+m� = 16k−m.

Suppose that we can find a feasible solution with �1 + δ��16k−m� con-
served regions. This number is

�16k−m� + δ�16k−m� ≤ �16k−m� + δ�32m−m� = 16k− �1 − 31δ�m�

the complexity of gene placement 243

So we could then approximate 3-bounded max-2SAT within 1 − 31δ.
Hence a PTAS for this gene placement problem would give a PTAS for
3-bounded max-2SAT.

REFERENCES

1. V. Bafna and P. Pevzner, Genome rearrangements and sorting by reversals, SIAM. J.
Comput. 25 (1996), 272–289.

2. V. Bafna and P. Pevzner, Sorting by reversals: Genome rearrangements in plant organelles
and evolutionary history of X chromosome, Mol. Biol. Evol. 12 (1995), 239–246.

3. M. Blanchette, G. Bourque, and D. Sankoff, Breakpoint phylogenies, in “Genome Infor-
matics’97,” S. Miyano and T. Tayagi (Eds.), pp. 25–43, Tokyo, Japan, 1997.

4. M. Blanchette and D. Sankoff, The median problem for breakpoint phylogenies, in
“COCOON’97,” Lecture Notes in Computer Science, No. 1276, pp. 251–263, Springer-
Verlag, Berlin/New York 1997.

5. B. DasGupta, T. Jiang, S. Kannan, M. Li, and Z. Sweedyk, On the complexity and approx-
imation of syntenic distance, in “RECOMB’97,” pp. 99–108, Assoc. Comput. Mach.,
New York.

6. S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals), J. Assoc. Comput. Mach. 46 (1999), 1–27.

7. S. Hannenhalli and P. A. Pevzner, Transforming men into mice (polynomial algorithm
for genomic distance problem), in “36th Annual IEEE Symposium on Foundations of
Computer Science,” pp. 581–592, 1995.

8. J. Kececioglu and R. Ravi, Of mice and men: Evolutionary distances between genomes
under translocation, in “Proc. 6th Annual ACM–SIAM Symposium on Discrete Algo-
rithms,” pp. 604–613, 1995.

9. J. Kececioglu and D. Sankoff, Exact and approximation algorithms for the inversion dis-
tance between two permutations, Algorithmica 13 (1995) 180–210.

10. J. Kececioglu and D. Sankoff, Efficient bounds for oriented chromosome inversion dis-
tance in “Combinatorial Pattern Matching, Proc. 5th Annual Symposium (CPM’94),
Lecture Notes in Computer Science 807,” pp. 307–325, Springer-Verlag, Berlin, 1994.

11. S. Letovsky and M. B. Berlyn, CPROP: A Rule-Based Program for Constructing Genetic
Maps, Genomics 12 (1992), 435–446.

12. J. H. Nadeau and B. A. Taylor, Lengths of chromosomal segments conserved since diver-
gence of man and mouse, PNAS 81 (1984), 814–818.

13. P. Nadkarni, Mapmerge: Merge genomic maps, Bioinformatics 14, No. 4 (1998), 310–316.
14. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity

classes, J. Comput. System Sci. 43 (1991), 425–440.
15. P. A. Pevzner, “Computional Molecular Biology: An Algorithmic Approach,” MIT Press,

Cambridge, MA, 2000.
16. D. Sankoff and M. Blanchette, Multiple genome rearrangement, in “RECOMB’98,”

pp. 243–247, Assoc. Comput. Mach., New York, 1998.
17. D. Sankoff, V. Ferretti, and J. H. Nadeau, Conserved segment identification, J. Comput.

Biol. 4, No. 4 (1997), 559–565.
18. D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F. Lang, and R. Cedergren, Gene order

comparisons for phylogenetic inference: Evolution of the mitochondrial genome, Proc.
Nat. Acad. Sci. USA 89 (1992), 6575–6579.

19. J. C. Venter et al. The sequence of the human genome, Science 291 (2001), 1304–1352.
20. The Genome International Sequencing Consortium, Initial sequencing and analysis of the

human genome, Nature 409 (2001), 860–921.

	1.INTRODUCTION
	2.TECHNICAL DETAILS
	FIG.1.
	FIG.2.
	FIG.3.

	REFERENCES

