
Symmetry Breaking for Suffix

(extended abstract)

Suleyman Cenk $ahinalp *

Tree Construction

Uzi Vishkin t

Abstract

There are several serial algorithms for suffix tree construc-

tion which run in linear time, but the number of operations

in the only parallel algorithm available, due to Apostolic,

Iliopoulos, Landau, Schieber and VLshkin, is proportional to

n log n. The algorithm is based on labeling substringsj sim-

ilar to a classical serial algorithm, with the same operations

bound, by Karp, Miller and Rosenberg. We show how to

break symmetries that occur in the process of assigning la-

bels using the Deterministic Coin Tossing (DCT) technique,

and thereby reduce the number of labeled substrings to lin-

ear. We give several algorithms for suffix tree construction.

One of them runs in 0(log2 n) parallel time and O(n) work

for input strings whose characters are drawn from a constant

size alphabet.

1 Introduction

Suffix trees are apparently the single most important data-

structure in the area of string matching.

We present a parallel method for constructing the suffix

tree T of a string S = S1 . . . sn of n symbols, with s- being

a special symbol $ that appears nowhere else in S. We use

A to denote the alphabet of S. The suffix tree T associated

with S is a rooted tree with n leaves such that:

1. Each path from the root to a leaf of T represents a

different suffix of S.

2. Each edge of T represents a nonempty substring of S.

3. Each nonleaf node of T, except the root, must have at

least two children.

*Department of Computer Science, University of Maryland,
CoUege Park, MD 20742;

t ~5titute for Advanced Computer Studies, and Department

of Electrical Engineering, University of Maryland, College Park,
MD 20742; and Dept. of Computer Science, Tel Aviv University,
Tel Aviv, Israel; Partially supported by NSF grants GGR-S906949
and CCR-9111348.

Permission to copy without fee all or pan of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

STOC 94- 5/94 Montreal, Quebec, Canada
@ 1994 ACM 0-89791 -663-8/94/0005...$3.50

4. The substrings represented by two sibling edges must

begin with d{fferent characters.

An example of a suffix tree is given in Figure 1.

S:olol$

T:

A

o
1 1

s
o 0

$
$1

$
$’

Mfrul mJsix3 S&i15 dsx2 Nsix4

Figure 1: Suffix tree T of string S = O 101$

Serial algorithms for suffix tree construction were given

in [K MR72], [We73], and [Mc76]. The two latter algorithms

achieve a linear running time for an alphabet whose size is

constant.

A parallel algorithm was given in [AILSV88].

A Symmetry Breaking Challenge: As in the alg~

rithm of [KMR72] work complexity of the above mentioned

parallel algorithm is O(n log n). The approach of [KMR72]

and [AILSV88] does not lend itself to linear work for the

following reason: As these algorithms progress, they label

alln -1 substrings of size 2, then all n - 3-substrings of

size 4, and in general all (n -2’ + 1)-substrings of size 2i

(1 < i < log n). This results in a number of labels which is

proportional to n log n and this dictates the work complex-

ity. The extra logarithmic factor in the label-count is due

to the increasing redundance among these substrings (be-

cause of the overlaps), as they become longer. The problem

is that there has been no consistent way for selecting only
one among a subset of overlapping substrings, since they all

“look-alike”. The main new idea of this paper is in intro-

ducing a solution to this sgmmetry bmaki~g ptvblem.

Our most interesting concrete result is in being able

to build a suffix tree (of a string of characters selected from

a constant size alphabet), optimally in 0(log2 n) time.

The general area of string matching haa been enriched by

parallel methods that enabled new serial algorithms as in

this paper. Previous examples include [Ga85], [Vi85], and

[Vi91]. The new method is also relevant for sequence analysis

in compressed data, since it allows for consistent compression

300

of data. This can be done in the context of parallel or serial

algorithms.

2 The Basic Algorithm

We first describe a ‘basic” rdgorithm. The algorithm is ran-

domized and runs in O(n log* n) work, and O(n’) time (for

any constant O < c ~ 1) for an alphabets whose size is

bounded by a polynomial in n. We describe how to improve

it to an optimal (linear work) deterministic algorithm which

has a time complexity of 0(log2 n) for a constant size rdpha-

bet in the next section. The ideas that will be presented in

this section can be used to obtain an 0(log2 n) time algo-

rithm, again for alphabets of size polynomial in n. However,

the work complexity of this algorithm will be O(n log log n).

2.1 High-level Description

The basic algorithm works in three stages. In the first stage

we attach labels to various substrings of S, recognizing some

identities. This is done in iterations.

In iteration 1, S is partitioned into at most n/2 blocks.

Each block is labeled with a number between 1 and n, in a

way which satisfies the following two consistency proper-

ties:

Partition-consistency (we state this property infor-

mally) Denote by X, some “long enough” substring of ,S

(which starts) at location i and denote by Xj a substring at

location j, which is equal to X,; then, with the exception of

some (left and right) margins, X, and X, will be partitioned

in the same way.

Label-consist ency All blocks consisting of the same

string of characters will get the same label.

An example of consistent partitioning and consistent la-

beling is given in Figure 2.

x, x,

s: ~kdd..
labels: 1 35753515

EEl &ffmumbl*ln61abds.. mugim

m ddhdY&&dUd].bdOdbHI

Figure 2: Consistent partitioning, consistent labeling and

margins

So, iteration 1 partitions S = S(0), “shrinking” it into a

new string S(l); the length of S(1) is at most half the length

of S(0). Subsequent iterations apply the same procedure.

Iteration i, i = 2,3,... shrinks string S(i– 1) into string S(i)

satisfying similar partition-consistency and label-consistency

properties. The size of string S(i) will be at most 7J/2’.

The labels of blocks obtained in iteration i are called i-

labels, and the substrings they represent in S are called

i-substrings. Here we note an important distinction; an i-

Iabel is a name which represents an i-substring. This label

is considered as an i-character in S(i), which will be the

input for the iteration i+ 1 of the first stage. The i-substrings

are said to be “built up” of i — l-substrings.

To motivate the second stage, we note that the strings

S(i), i = 0,1,2,..., provide a hierarchical system of subsets

over the set of indices {1,2, n}, w~lch are coar5er and

coarser partitions of {1, 2, n}. Specifically, S(f)) provide

singleton subsets, where each subset contains a single index.

The subsets of S(i) satisfy the following: (i) each subset

of S(i) is the union of subsets of S(i - 1); (ii) the union

of the subsets of S(i) is the set {1,2,. . . . n}; and (iii) the

intersection of every pair of subsets is empty.

We wish to construct the suffix tree of S in iterations.

However, the partition-consistency property above is too

weak for us as we cannot guarantee for any two identical

substrings of S that they are partitioned, and hence labeled,

in the same way. The Second Stage develops an alternative

hierarchical system of subsets. A subset in the ~ternative

system is called a core. In the context of cores we will use

the letter C for denoting substrings.

Similar to the First Stage, C(0) = S(0) = S, and the cores

(subsets) of C(i), : = 1,2,... satisfy that: (i) exh core of

C(i) is the union of cores of C(i - 1); and (ii) the union of

the cores of C(i) is the set {1,2,..., n}. However, (iii) the

intersection of some pairs of core of C(i) is not empty.

Cores representing the same substring will be given the

same label. The label of a core is called a name. We give a

small example to clarify the relation between substrings and

labels of cores.

Example 1 Let sll = a, slz = b, S13 = a, ~14 =

c, 915 = a, 916 = d, slr = e, 918 = b, s19 = d, s20 =
c, Szl = a, 922 = c, ~23 = a be a substring c~fS and suppose

that {11, 12,13,14,15,16,17, 18}, {14, 15,16,17,18, 19}, and

{16, 17,18,19,20,21,22, 23} are cores of C(l). Let the labels

of these cores be 3,2 and 6 respectively. Then, in C(1) a sub-

string 3 26 will correspond to the above substring of S.

NOW, let s31 = a, S32 = b, s33 = a, s34 = c, S35 =

a, s3LI = d, SST = e, S38 = b, sw = a, sw = c, s41 =

= a be a substring of ,S, and suppose

~~a;4~31~3j~ 3j~j4, 35,36,37, 38}, {33, 34,35,36,37,38, 39},

and {36, 37, 38,39, 40,41, 42, 43} are cores c}f C(l). Let the

labels of these cores be 3,1 and 5 respectively. Then, in C(1)

a substring 3 1 5 will correspond to the above substring of

s.

Note that: (1) The single inequality of S119and sw im-

plied more than one inequality in C(l). (2) ‘The redundancy

among cores. For instance, in the substring 326 of C(l),

we do not really need the character 2 since the core of 3 in-

tersects the core of 6. (3) Wherever needed we will also keep

the number of characters at the beginning of each core before

the next core begins (for the core of 3 above this number is

3 and for the core of 2 this number is 2.)

The reason for moving to the alternative system is that

it enables to satisfy the following property: Consider two

cores of some C(i) which represent two equml substrings of

S. Then, they will have the same core label. This property is

stronger than the partition-consistency property above and

will guarantee that the Third Stage can lbe implemented

301

quickly in parallel and at the same time will not miss any

identities.

The Third Stage builds the suffix tree of S, as follows:

The input for the last iteration is T(l), which is the suf-

fix tree of the labels of C(l). The last iteration constructs

the suffix tree of C(0) = S. The i’th-prior-to-the-last itera-

tion constructs the suffix tree T’(i) (the suffix tree of labels

derived from C(i)), by using T(i + 1) .

2.2 First Stage

Consider iteration h of the first stage. The input for this

iteration will be the string Sk of m characters (for some
~/2h ~ m > O). Sh will be denoted by R for the rest of this

section. Iteration h partitions R into ml blocks and labels

each block. At this point we only say that n/2h+1 ~ ml >0.

The problem is how to do it so that: (1) the properties

of partition-consistency (defined formally later) and label-

consistency are satisfied; and (2) a too rapid shrinking does

not occur (a too rapid shrinking may cause problems at a

later stage of the algorithm). An iteration consists of two

steps: partitioning R into block, and labeling the blocks. We

first describe the partition step and then the labeling step.

2.2.1 Overview of the partition step

1.

2.

3.

Only characters r, whose substring length (in the input

string S) is short, concretely whose length is ~ 2h+2,

“participate” in the iteration. For each character whose

substring is longer than 2h+2 (such a character is called

long), put block dividers to its left and right and thk

character ‘quits” the current iteration.

Each character r,, now checks if it is in a substring of a

single repeated character; that is, r, is compared with

ri+l and ri-1 .

● If not (i.e., rl # ri+l and ri # ri-1) then we

say that ri belongs to a changing substring.

For a changing substring RC = rj+l . . . rj+k

we have that r, # rj+l # rj+’ . . . rj+k # rj+k+l

and neither rj nor r~+k+l belongs to a changing

substring. For each changing substring we ap

ply procedure CONTENT-BASED (which is de-

scribed below). At this point we only need to

know that this procedure partitions a changing

substring RC = rj+l . . . r,+k of length larger
than 1 (i.e., k > 1) into blocks of size 2 or 3.

● If ri = T,+l but r, # ri-1, then a block divider
is put between T; and Ti—1; similarly if r, = rl_l

but ri # ri+l, then a block divider is put between

ri and ri+l. This gives blocks of single repeated

characters. Such a block consists of a substring of

the form RR = rJ+l . . .rj+k, where r~ # rj+l =

r3+2 ...= rj+k # rj+k+l, for some k ~ 2.

The iteration should guarantee that the total number of

blocks is s ra/2h+1. For this, we still need to consider

characters r, which form singleton blocks. A charac-

ter ri forms a singleton block if each of its immediate

left and right neighbors (i.e., r:-1 and ri+l) belongs to

a block of a repeated character, or is a ‘long charac-

ter’ itself (i.e., it is the label of a substring longer than

2h+2). Below, we actually treat only a subset of such

characters.

s

●

If the left block of such ri consists of a single

character which is repeated exactly twice (i.e.,

ri-s # ri-’ = ri-1 # ri), we merge ri with

this block to obtain a block of size three.

If such ri is the first character of R (i.e. } ri = rl),

we merge it with its right block.

It is easy to see that if the length of R is < n/2h, then

the number of resulting blocks is < n/2h+1.

2.2.2 Additional details on the partition step

Our detailed description starts with presenting procedure

CONTENT-BASED. Consider a substring Rc = r. . . . rp,

where ri # ri+l, for a s i < /3. Namely, we do not allow

a substring of the form aa. The main idea behind the parti-

tioning procedure below is the use of the deterministic coin

tossing technique of Cole and Vishkin [CV86a] for dividing

RC into blocks.

1.

2.

3.

4.

5.

Put a divider to the left of r= and to the right of rp.

Each instruction for putting a divider below should be

augmented with the following cuueat we actually put

the new divider only if it does not create a block con-

sisting of a single character.

Put a divider to the right of r~+ 1. Put a divider to the

left of rp-1.

For each character ri of Rc compute tagi (in parallel),

as follows. Suppose that ri and r,+ 1 are given in binary

representation. The tagi is the index of the least signif-

icant blt in which r, is different than ri+l. If ri+l does

not exist (for now, this can happen only if i = m), set

t(lgi := O. By saying “in parallel” we imply that this

step has to be finished before proceeding to the next

step.

For each character r, of RC, compare i?agi with tag,+l

and tag,_l. If any of them does not exist (for now

this can happen if i = cr, or i = /3), take the non-

existing value to be O. For all “strict local maxima”

(i.e., tagi > tagi+l and tag, > tagi_l) put (in parallel)
a block divider between ri and ri+ 1. For all ‘wealdy

local maxima” (i.e. tagi 2 tag,+l, and tagi 2 tagi-1),

put (in parallel) a block divider between r, and r,+l, if

blt tag; of ri is 1.

We consider separately each substring of Rc, which lies

between two dividors~ and do the foliowing for each. If

the substring has < 3 elements those elements quit.

Otherwise, for each character ri, replace character ri

by tagi, and recursively apply the CONTENT-BASED

procedure to the substring.

Example 2 (content-based partitioning) Let

R= . ..33842124848488 Typically, we

will apply the CONTENT-BASED procedure to a longest

substring which satisfies the rnput conditions which in this

302

case will be:

RC = 8421248484. After applying steps 1 and 2 we

have:

18412124841841. In binary representation RC becomes:

1000 O1OOIOO1O0001 00100100 1000 0100[1000 0100 , and

the corresponding tag values are:

3211233330. Hence in the first round of CONTENT-

BASED, we partition Rc as follows:

8412124184184. Then we apply CONTENT-BASED

procedure again to get:

84121124184184, aa the final partitioning of Rc.

Comment. Our use of the deterministic coin tossing tech-

nique is novel. We use it for deriving “signatures” of strings,

mapping similar substrings to the same signature. The only

previous paper which made use of this technique for produc-

ing signatures is apparently by Mehlhorn, Sundar and Uhrig

[MSU94]. They limited the use of these signatures to com-

paring full strings, and did not consider substrings. We had

to develop significantly stronger tools for constructing suffix

trees.

Lemma 3 (consistency lemma) Let Rd be a sub-

string of R. Let R: be another substring of R which is

equal to Rd. All but (at most) log* n + 1 characters in the

right margin and (at most) log* n + 1 characters in the left

margin of Rd are called the interior of Rd. If the above first

stage puts a block divider in some location in the interior of

Rd then it also puts a divider in the same location at R~.

2.2.3 The labeling step

Each block is labeled with a number between 1 and m to

satisfy label-consistency. To achieve this, we determine the

size of each block. This can be obtained by first applying a

nearest one procedure to determine the starting and euding

locations of each block, which takes O(log m) time with lin-

ear work [BV88]. (Giveu an array of n bits, a nearest one

procedure finds for each position in the array the nearest bits

whose value is one to it the left and right of the position.)

Then we label each block in O(1) time with O(m) work in

three substeps.

1. We first attach labels to blocks of a repeating single

character (called, blocks of repetition substrings).

This can be done easily in an arbitrary CRCW PRAM

by using an array L of size m X m. Given a block

of a character c which is repeated 1 times, its index in

R is written, using the arbitrary-write convention into

location L(c, 1). The index which is actually written

into some L(c, /) will then be used as the label by all

blocks in which the character c is repeated 1 times.

2. In the second substep we attach labels to all blocks of

size 2, aa well aa to the first two characters of all blocks

of size 3. This is done using an m x m array L. For each

such two-character substring ij, where 1 ~ i, j < m, the
location of i is entered into entry L(i, j). This is similar

to [AILSV88].

3. Now, we attach labels to all block of size 3. For each

three-character substring ijk, we obtain its label by

reapplying the second substep to fk where f denotes

the label of ij aa computed in the second substep.

The space complexity is 0(m2). This can be reduced to

O(ml+’), for any fixed c > 0, as in [AILSV88]. Getting

linear space using hashing (and thereby entering randomiza-

tion), as suggested in [MV91], is also a possibility.

An example for block partitioning and labeling is given in

Figure 3.

s(o):0211 3014 1100001110012113014 11000012

s(1): 1 3!6 8 k2131511761 8 25

s(2): 1 3 5 8 10
. .
. .
. .

Figure 3: Block partitioning and labeling for successive it-

erations

2.3 Second Stage

We define a core of iteration k recursively. Any k-substring

Sk)i induces, or spans another substring of input which is

called a k-core. Given a substring sk, we show how to

extend it to the left and to the right to obtain the k-core ck

that sk spans. We use the following systematic notations

and definitions. We denote Sk,: by sk. The (k-1)-substrings

that build up Sk,i will be denoted Sk-1,=, Sk – 1, b. The

core spanned by a string denoted by S. will be denoted by

C~. The label for S. will be denoted by La. ‘The core name

of Co will be denoted by Na. The prefix of Ck which lies to

the left of S&l,. will be called the left extension of ck and

the suffix of ck which lies to the right of Sk-1 ,b will be called

the right extension of ck. The recursive definition follows.

1. If k = O, then ck = Sk.

2. If sk is a long k-substring, built up of a single (k – l)-

substring Sk-1,~, then ck, the k-core spanned by sk,

will be equal to the (k — 1)-core spanned by Sk-l,a,

namely Ck-1,~.

3. (a)

(b)

Consider the first log* n + 3 (k --1)-substrings

to the left of Sk-l,a (also called the left uicin-

ity of sk) and the log” n + 3 (k -- 1)-substrings

to the right of Sk-1 ,b (the right vicinity of

Sk). Formally &-1,~.-log* n+3, .,., fkl,~-1 is

the left vicinity and Sk-l,b+l, sk-l,b+lo~. “+3

is the right vicinity. If none of them are

long then ck will be the concatenation (with

overlaps) of the cores spanned by the (k –

1)-substrings S~-l,~-l~g* n+3, $k-l,b+bg* n+3;

namely, Ck-l,~-l.~* n+3, Ck-1,a–1 ,

Ck-l,a,. ... Ck-l,b, Ck-l,b+l ,... ,Ck-l,b+log= n+3.

If some of &$/c-l,a-lo~* ~+3, ..., Sk-1, a-1 is long

then denote the rightmost one among them, as

S&_l ,left. The left extension of (?k will include

all (k – 1)-substrings to the right of Sk-l,left

until Sk-1,. is reached. There will be an addi-

tion to that.

labels whose

Consider the repeated string of 1-

Lsubstrings build up S~_I ,le~~. Ck

303

will also include the rightmost 2k-~+1 of the 1-

cores spanned by these substnngs. A similar

definition is used for the right extension of Ck.

Let the leftmost long substring (if exists) among

f%-l,b+l,. . . . Sk-l, b+iog* “+3 be Sk-l,right. The

right extension of Ck will include all (k – l)-

substrings to the left of Sk-I ,right until Sk–1 ,b

is reached. Given the repeated string of r-labels

whose r-substrings build Up Sk-1 ,right, Ck will

also include the leftmost 2k-r+l of the r-cores

spanned by these substrings.

To visuaEze how Ck looks like, consider the third case,

with no long (k — 1)-substnngs in the left and right vicinities

of S&. In the middle of Ck, there will be sk. To its left

there will be Sk-l,O-l~g* n-3, Sk_l,ta-1 which are (k- l)-

substrings. To their left there will be more log* n + 3 strings

which are (k-2)-substrings, and soon till finally there will be

log* n + 3 O-substrings (i.e. singletons). The concatenation

of these substrings to the left of Sk is the left extension of

sk. There is also a symmetric right extension. So, a k-core

is a “double staircazefi. Figure 4 illustrates such a double

staircase where the left vicinity is the simple case where no

long substring is encountered, while the right vicinity haa a

long (k - 1)-substring.

k-core
k-substring

k-1-substringti

k-2.sukaingc
. !x@

●✍ ✎
✎ ✎

thesubssring,wvemi bysbck-me areshownby thedottcdblockx~

Figure 4: sk is extended by log” n + 3 (k - 1)-substrings

followed by log* n + 3 (k - 2)-substrings and so on towards

left, while for the right extension case 3(b) applies

An example of a core is given in Figure 5.

Corsspm al byz-label 5
r (

043bdx 0211~141100001110012113014 l&i O02

I-lsbds: 1 3
\ Hw I 1213~~ I ‘“.’’ii’i ~

2-labels: v
Figure 5: An example of a core. For illustration purposes,

assume log” n + 3 = 2 (which is not possible)

We now give some definitions and then present some im-

portant properties of cores. The proofs of the lemmas are

left to the full paper ([SV94])

The suffix (of the original pattern) which begins at the

leftmost character of a k-core is called the sufilx of that

core, and is referred to as a k-suffix. Note that, if there are

no long substrings in the left vicinity of a (k + 1)-substring

then its (k + 1)-suffix is also a k-suffix. Moreover, we define

a long core aa a core spanned by a long substring and a

repetition k-core as a long k-core which is spanned by a

k-substring that is built up of repeated (k - 1)-characters.

Lemma 4 (length lemma) The length of each of the

left and right extensions of a core (%, is < 2(2k+2)(log” n+3)

The cores obtained by the second stage satisfy the follow-

ing “Core Propertyn.

Lemma 5 (core lemma) If a substring Cl of S is a k-

core for some iteration k, and if C2 is another substring

which is identical to Cl, then: (i) Cz is also a k-core, and

(ii) Cl and Cz are given the same core name.

The following lemma shows that if a k-substring is built

up of many (k — 1)-substrings, then all but a few of the

cores that are spanned by these (k -1)-substrings should

have identical names.

Lemma 6 (middle of core identity lemma)

Suppose Sk is build up of more than 16(log* n + 3) + 2

(k - 1)-substrings (i.e. b – a ~ 16(log* n + 3)); then the

(k - 1)-names of the (k - 1)-cores Ck_~,~,..., C&~,b (de-

noted by Nk_l,~, ..., ~k-1 ,b), are in the following form:

There exists two numbers a, /3 < 8(log* n + 3) such that

Nk-1,.+a+l = . . . = Nk-1,b+-1 .

A corollary to Lemma 6, will be one of the key ideaa that

would enable us to perform the third stage efficiently:

coronary 7 The structure of the left extensions of ck,

in terms of j-cores (j < k) are as follows (a similar statement

applies to right extensions):

●

●

If all (k - 1)-substrings in the left vicinity are short,

then the left extension of ck is built up of log” n + 3

(k – 1)-cores.

If there is a long (k - 1)-substring in the left vicinity,

then ck is built up of the following: To the left, there

will be at most 8(log* n +3) I- 2 l-cores (with possibly

different core names), followed (to their right) by some

number of l-cores with identical core names, followed

(to their right again) by at most 8(log* n + 3) + 2 1-

corea (with possibly different core names), followed by

at most log* n + 2 (k - 1)-cores (with possibly different

core names).

2.3.1 Implementation of the second stage

Foreachk = 1,2,..., where k is an iteration of the first

stage, do the following. For each L=substring, compute the

k-core that it spans and label each such core with a core

name, which is called a k-core name.

The name computation is similar to the label computation

of substrings in the first stage. There, a k-substring was

built up of at most three (k – 1)-substrings with different

labels or two or more (k – 1)-substrings with identical core

names. This enabled us to use a table of size m2, where m

is the size of S(k - 1). Here, a k-core is built up of:

1. 2k-t+l l-cores among which all but at most 16(log* n +

3)+ 1 are identical; followed by

304

2.

3.

some number of (k — 1)-cores in the following pattern:

a string of at most (1 + tl)(log” n + 3) (k — I)-cores is

followed by a string of some number of identical (k – l)-

cores, which is then followed by a string of at most

(1+ 8)(log* n + 3) (k - 1)-cores; followed by

2k-r+l r-cores.

Therefore, we have O(log” n) different names. Casting ev-

eryt hing in a string of length O(log * n) of characters each

consisting of log n bits is straightforward, since we only need

to mark for each i-core its number of repetitions, and the in-

dex i. To name the k-cores consistently in O(log’ n) time

with O(rn log* n) work, we keep a table of size n2 by apply-

ing a similar procedure to the one in theflrst stage. This

space requirement can be decreased to linear by the use of

hashing techniques ([MV91]).

The time complexity of this stage is O(log” n) per it-

erat ion. The total time complexity for this stage is

O(log n log* n). The total work complexity is O(n log* n).

2.4 Third Stage

The suffix tree is constructed iteratively. (extended abstract)

In iteration k of the Third Stage, the suffix tree T(k) of

k-cores using k-core names (in other words, the suffix

tree of the string C(k)) is built by using T(k + 1). T(k + 1)

has limited resolution, as some possible identical prefixes

between two (k+ 1)-cores cannot be precisely expressed with

(k+ 1)-core names. Iteration k builds T(k) from T’(k+ 1)

by improving the resolution with a more dense set

of cores whkh are shorter. Note that, aa a matter of
convenience, the iterations are numbered in reverse, where

the final iteration (whose serial number is 1) gives the desired

suffix tree.

Suppose a (k + 1)-core forms a substring A in S. The

substring of C(k) which forms the longest substring in S

which is included in A is said to be the substring of k-

cores covered by A.

A concise representation of the string of k-cores that are

covered by each (k + 1)-core looks as follows.

Fact 8 Given a k+ l-core, C~+l, the string of k-cores cov-

ered by Ck+l, can be represented by a string of o(log” n) tu-

ples, where each tuple consists of two coordinates: the name

of a k-core, and an integers which stands for the number of

repetitions of the k-core.

During the Third stage it so happens that we first find

identities between full tuples (i.e., both name coordinate and

number coordinate match). Later on, we find identities be-

tween the name coordinate of different tuples.

2.4.1 Overview of the Third Stage

We need to do several things in order to build T(k) from

T(k + 1):

1. Get ‘lkee T(k)o. Procedure REFINE refines T(k + 1)

into T(k)., in the following sense: We replace each (k+

1)-core name on T(k + 1) with the names of the k-cores

it covers. This involves the following substeps:

Take the first (k + I)-core name on each edge of

T(k + 1) that is incident on the root of T(k + 1).

Replace it by the strings of k-core names that it

covers (see Example 9).

Now replace the rest of the (k+ 1)-core names bv

the strings of the names of ‘the ~-core that they

cover. Due to overlaps, each (k + 1)-core should

only “take care” of being replaced by those k-core

names that are not covered by its predecessor in

T(k + 1).

Notice that in the case where there are long k-substrings

in the left vicinity of a (k+ 1)-substring, the suffix oft his

(k+ 1)-core is different from the suffix of the leftmost k-

core it covers. Hence the suffixes we consider for T(k).

are not necessarily the suffixes of T(k + 1).

Now, for each node of Z’(k + 1), merge its outgoing

edges that have a common prefix of k-core names. The

common prefix between the two suffixes which begin

with two sibling edges can not exceed a string fhat any

of the two edges represent. In other words a situation

such as in Figure 6 cannot happen.

A
T(k+l)

D
%..

......
.........

...%.
CE

......
..........

...

. . . %

Figure 6: It is impossible to have three (k+ I)-cores, A, D

and E, with A becoming a, b, a, d, B becoming a, b, a, and

D beginning with d

This fact is implied by the core property and plays a

significant role in the analysis of our algcmithm.

2. Get Tree Z’(k)l. Consider C(k). A (k + 1)-core is

represented in C(k) by the string of names of k-cores

that it covers. The tail of ck is defined as the substring

in C(k) which starts with ~k, includes tlhe core names

of all k-cores till the end of the first full (k+ 1)-core to

ck’s right. An example of a tail is given in Figure 7.

The tail of each k-core will be represented by a string

of O(log” n) tuples (each with 2 log n bits).

Compute the tail of each k-core ck in C(k).

Divide all k-cores into equivalence classes, tl t~...? a~
according to their tail; namely, the cores having the

same tail should be in the same equivalence clsss.

305

The next example demonstrates how procedure RE-

FINE works.

3.

f tailofc 1
first (k+l)-cae to c’s right

Figure 7: An illustration of the tail of a k-core, C

For each equivalence class t=, have in T(k)l an edge,

e=, which comes out of its root (the edge represents the

tail corresponding to this class) and a node n., at the

end of this edge.

By way of motivation assume that each node n. is the

root of the full 7’(k)o, and it should be clear that the

resulting (huge) tree will enable to represent every suffix

in C(k). The problem, of course, is that many strings

which are not suffixes in C(k) are also included.

So, for each node n. (and its equivalence class t=) proce-

dure CONTRACT contracts T(k)o to obtain a subtree

beneath the node n=; this subtree completes the repre-

sent ation of suffixes in C(k) that go through n=. The
general idea is as follows. We first: (1) preprocess the

tree T’(k)o, so that the lowest common ancestor (LCA)

of each pair of nodes in it can be retrieved in a con-

stant number of operations ([BV88], [SV88]); and (2)

sort the leaves of T(k)o according to their order of ap-

pearance in preorder traversal of T(k)o. For this the

Euler Tour technique is applied. Focus now on the tree

beneath some node n., and consider two leafs of this

tree which represent actual suffixes in C(k). The lowest

common ancestor of the two leafs gives a node which

should appear in the final T(k). The next simple obser-

vation is that we do not really need to find the lowest

common ancestor of every pair of such leafs; instead, we

consider the leafs beneath each node n= separately, and

find the lowest common ancestor of each successive pair

of leafs only. It turns out that thk gives all the informa-

tion needed for extracting from each copy of T(k)o the

subt ree needed for T(k); we suppress implementation

details of how to actually do this.

Get Tree T(k). The only thing missing in T(k)l is

that equal prefixes of tails have not been identified. For

this, procedure MERGE merges the edges adjacent to

the root of T(k)l (which represent distinct equivalence

classes of tails). From Lemma 5, we know that the

common prefix between the two suffixes which begin

with two sibling edges emanating from the root, can
not exceed a string that any of the two edges represent.

2.4.2 Further Details for the Implementation of

1.

the Third Stage

Get tree Z’(k)O. Procedure REFINE, which will derive

tree T(k)o from tree T(k + 1), works as follows. For

obtaining T(k)o, the basic idea is: For every internal

node of T(k + 1), advance through the edges incident

to it, by merging sibling edges that represent identical

core names into a single edge.

Example 9 (construction of T(k)) Consider Ex-

ample 1 above. The tree T(k), for an appropriate k

will represent the suffix starting at s1l and at 531. Sup

pressing the existence of other suffixes, the root will

have an outgoing edge labelled 3 leading to a node de-

noted w Node u will have two outgoing edges. One

is labeled by the chain 2,6 followed by the subsequent

cores in C(k) and leads to a leaf 11. The path from

the root to leaf 11 represents the suffix starting at s1l.

Similarly, there is another outgoing edge from u which

leads to a leaf L, which is labeled by 1,5,..., and the

path from the root to 12 represents the suffix starting

at 531. See also Figure 8 (a).

(a)

/(~~~
root
>.

3
\..\..

., ~...
,..
“\, “’....

\ ~..
u “\ %. ...

i! ~..
2 ‘-- \ ~..... ~.

6 5
%.%... “~...

x....““....
11 12 ..0 ‘0 “ “ “ ‘“”o

(b)

L

Mot

~ba ~P...
... %,

c i., “\
~da \

\..
i., ..

.....u ., i,, ..,,... \
‘-.. ... ‘“\\...... ~!.

c ... \..
~. t!, ..,.

\ ..,.
c

11 ->.h “’”b ● ● >“0
all

(c)

Figure 8: refining T(k + 1)

To get T(k) we first replace the (k + 1)-core name,

3 with the string of k-core names (a, b, a, c, a, d, e).

The (k + 1)-core name 2 represents the string of k-

core names (c, a, d, e, b, d); but because of the over-

laps it is replaced by the string (b, d). Similarly,

the (k + I)-core names, 6, 1, and 5, which repre-

sent the strings of k-core names (d, e, b, d, c, a, c, a),

(a, c, a, d, e, b, a) and (d, e, b, a, c, a, c, a), are replaced by

the strings (c, a, c, a), (b, a), and (c, a, c, a), respectively

(see Figure 8 (b))..

306

2.

3.

After this replacement, the resolution with respect to

Z’(k + 1) is improved by merging sibling edges by ob-

serving similar prefixes.

In our example, the two sibling edges, incident on

the node u, represent the strings of k-core names,

(b, d,c, a, c,a), and (b, a, c, a,c, a). We merge the two

edges, aa the first k-core they represent (which is b) is

identical and obtain the node u’ (see Figure 8 (c)).

Details of procedure REFINE

The substring of k-cores, of an edge, e, is represented by

O(log” n) tuples; the first coordinate being the k-core

name and the second coordinate being how many times

this k-core name is repeated successively. Let the first

tuple of an edge, e, be referred as to e(name, number).

For O(log* n) iterations, we do the following to get an

intermediate tree T(k)~:

● For each internal node, divide the edges incident

to it into equivalence classes according to the first

tuple they represent.

● Merge the edges that are in the same equivalence

class. If all the edges incident to a node fsll into

one class, remove this node.

This simple strategy improves the resolution of T(k+l).

However we have not considered sibling edges, e=,

ed with ea(name) = ep(name), and, ea(number) #

ep(number). For merging these sibling edges, we lexi-

cographically sort triples consisting of the parent of an

edge (to identify sibling edges), and the two-coordinate

tuples which label the edges.

Get tree T(k)l. For each equivalence class we apply

the CONTRACT procedure.

Get tree T(k). The procedure MERGE works iden-.,
tically to the procedure REFINE, with the difference

that it is applied to only the edges adjacent to the root

of T(k)l .

Complexity of Stage 3 The main problem of the

third stage is the need for sorting to apply REFINE, CON-

TRACT and MERGE procedures. The range of elements

to be sorted enables applying the integer sorting algorithm

of [BDHPRS89], so that this algorithm runs in logarithmic

time; however its work complexity is O(m log log m) for a

list of size m.

2.5 Complexity of the basic algorithm

The basic algorithm runs in 0(log2 n)

time and O(n log log n) work, for an alphabet hose size is

polynomial in n.

An alternative implementation takes O(n’) time and

O(n log* n) work for any fixed epsilon <1.

3 The Optimal Algorithm

We first recall the generrd case, where the input string is

drawn from an alphabet whose size is bounded by a poly-

nomial in n. The ‘basic algorithm* did not achieve linear

work because of the following three problems:

1.

2.

3.

Partitioning a string of size m into blocks, in the first

stage, may need a number of operations which is pro-

portional to m log* n. Naming the cores in the second

stage needs also O(m log* n) operations.

In the third stage, we need to perforlm integer sorting

in each iteration for m integers, selected from a range

ofl,m2. At present, there is no known parallel

algorithm which solves this problem optimally in poly-

logarithmic time.

The refinement of T(i), at iteration i ctf the third stage,

may need log* m steps for each node, implying a num-

ber of operations which is proportional to m log* m.

Henceforth, we restrict ourselves to the case where the

input string is drawn from an alphabet whose size is bounded

by some constant c.

The optimal algorithm begins aa follows. The first few,

say z, iterations of the Basic algorithm, are replaced. (z =

O(log log* n).) The goal is to reduce the length of S(k)

and C(k) to below n/(log* rz)2. The output of iterations

1 through z in the First and Second stage c)f the Basic a.lg~

rithm, are computed using an alternative algorithm. Simi-

larly the last few (specifically, log log= log n) iterations of the

Third stage of the Basic algorithm are replaced by an alter-

native algorithm. The other iterations of the three stages

of the Baaic algorithm will remain unchanged. (The design

of the optimal algorithm is essentially an application of the

accelerating cascades method for deriving an efficient par-

allel algorithm from two or more algorithms for the same

problem, see [CV86b], or [Ja92].)

We first explain how we solve the first problem and then

the second and third problems.

3.1 Solution of the first problem:

We start by discussing the emulation of the partitioning step

in the first iteration (in the First and Second stage) of the

Basic algorithm. The restriction to an alphabet of constant

size enables to use a table look up method. Recall that a

block divider is put in the location between two successive

characters based on at most log* n + 1 characters to the left

and at most log* n + 1 characters to the rig,ht. T~ number

of possible substrings of size 2 log ● n + 2 is c210g ‘+2. so,
●

we build a look-up table of size C210g “+2; given a location

between two successive characters, the substring of length

log” n + 1 to its left and the substring of of ILength log* n + 1

to its right, an entry of the table will tell whether a divider

should be put at the location.

Building the table and retrieving information from it is

standard and is , therefore, suppressed here,

A similar (actually simpler) table is used for assigning

names to cores in the first x iterations of the second stage.

The next z – 1 iterations of the Basic algorithm are

emulated in a similar way. The size of the table will be

O(n/ log* n); so, the number of operations in an iteration is

linear in the size of the input string for the iteration, and

the time is sublogarithmic. As we are (at least) halving the

307

size in each iteration, the total number of operations in the

first z iterations will remain linear in n.

After the first z iterations, we can obviously keep the work

linear throughout the first stage of the algorithm, as the size

of the string for the next iteration is O(n/(log* n)2).

3.2 Solution of the second and third

problems

The third stage of the optimal algorithm begins by using

all but thelsst loglogclogn iterations of the previous sec-

tion; since the deterministic integer sorting algorithm of

[BDHPRS89] needs O(rnloglogrn) work for sorting m el-

ements (from a range 1, m2), we can use it in each of
these iterations, and still satisfy a linear work upper bound.

Recall that if we can restrict the range of the values to

be sorted to integers between 1 and 0(log2 n), then we can

apply the deterministic stable sorting algorithm of [CV86a]

to achieve linear work in 0(log2 n) time.

At this point we would like to present an overview

of the improved third stage, starting from iteration

k = log log= log n (from the end). However, we leave the
details of implementation to the full paper ([SV94]). There

are four main steps. The first three aim at computing a suf-

fix tree, to be denoted T’, for some specific subset of suffixes

relative to the input string S = S(0). The definition of T’ is

given in Step 2.

1.

2.

3.

4.

We REFINE T(k) “fully”, by replacing the cores in

T(k) with the actual substrings in S; we replace the

k-core names by substrings of S which span these cores

and advance through characters of S. This gives the

suffix tree for those suffixes which start at the locations

where k-cores start (with respect to S).

We obtain a new string S’, from S(k) in the following

way: Consider the (k)-labels in S(k), which represent

long substrings (at iterat!on k). Long substrings at it-

eration k should be longer than 2k+2. Take the long

substrings which consist of a single repeated label of

some iteration < k. Replace each of these labels of

long strings with this substring of a single repeated la-

bel. This new string will be S’. Let C’ be the sequence

of cores which are spanned by the substrings labelled

by characters of S’. Consider the suffixes in S which

are the same as the ones implied by the suffixes of c’.

The suffix tree T’ will be defined with respect to these

suffixes in S.

We construct the suffix tree T’, by using the suffix tree

computed in Step 1.

Using T’, we construct T, the final suffix tree of all

suffixes of S.

The following property (which is an obvious coroIlary

to Lemma 5) guides us in doing this: Let S(X) and S(j)

be two suffixes of S, and let P denote their (longest)

common prefix. Any l-core (for all O <1 s log n) which

is included (relative to S) in P, and appears in one

among S(i) and S(j) must appear in the other (with

the same Lcore name).

The construction of T from T’ is similar to the way

steps 2 and 3 of the third stage construct T(k) from

T(k)o.

The main difference is that tables are used for repre-

sentation oft ails (including identity among tails). Since

tails relative to C’ are not too long, it is is possible to

limit ourselves to tables whose size is at most O(log n).

3.3 Complexity of the optimal algo-

rithm

The optimal algorithm runs in 0(log2 n) time and O(n) work

for an input drawn from an alphabet whose size is constant.

4 Conclusion

The method given in this paper enables to quickly iden-

tify long similarities among substrings. Actually, the first

stage of the basic algorithm should be very useful. Further-

more, on-line implementation will enable to quickly identify

similarities between recently received substrings and ones re-

ceived earlier, in the spirit of Lempel-Ziv’s data-compression

algorithm ([LZ77]).

References

[AILSV88] A. Apostolic, C. Iliopoulos, G. M. Landau,

B. Schieber, and U. Vishkin, Parallel Construction

of a Suffix Tree with Applications, In Algorithmic,

3: 347-365, 1988.

[BV88] O. Berkman, and U. Vishkin, Recursive star-tree

parallel data-structure, In SIAM J. Computing, 22,2:

221-242, 1993.

[BDlIPRS89] P. C. P. Bhatt, K. Diks, T. Hagerup,

V. C. Prasad, T. Radzik, and S. Saxena, Improved

Deterministic Parallel Integer Sorting, In informa-

tion and Computation, 94: 29-47, 1991.

[BLMPSZ91] G. E. Blelloch, C. E. Leiserson, B. M. Maggs,

C. G. Plaxton, S. J Smith, M. Zagha, A Compar-

ison of Sorting Algorithms for the Connection Ma-

chine CM-2, In Proceedings of the 3rd Annual ACM

Symposium on Pamllel Algorithms and Architectunx,

pages 3-16, 1991.

[CV86a] R. Cole, and U. Vishkin, Deterministic Coin Toss-

ing with Applications to Parallel List Ranking, In

Information and Control, 70: 32-53, 1986.

[CV86b] R. Cole, and U. Vishkin, Deterministic Coin Toss-

ing and Accelerating Cascades: Micro and Macro

Techniques for Designing Parallel Algorithms, In Pro-

ceedings of the 18th Annual ACM Symposium on the

Theory of Computing, pages 206-219, 1986.

[Ga85] Z. Galil, OptimaJ Parallel Algorithms for String

Matching, In Information and Control, 67: 144-157,

1985.

[Ja92] J. Ja’Ja’, An Introduction to Parallel Algorithms,

Addison-Wesley, 1992.

308

[KMR72] R. M. Karp, R. E. Miller, and A. L. Rosenberg,

Rapid Identification of Repeated Patterns in Strings,

Trees, and Arrays, In Proceedings of the 4’h Annual

ACM Symposium on the Theory of Computing, pages

125-136, 1972.

[LZ77] J. Ziv, and A. Lempel, A Universal Algorithm for

Sequential Data Compression In IEEE Tmnsactions

on Information Theor~, 23: 337–343, 1977.

[MV91] Y. Matias, and U. Vishkin, On Parallel Hashing

and Integer Sorting, In Journal of Algorithms, 12,4:

573–606, 1991.

[Mc76] E. M. McCreight, A Space - Economical Suffix Tree

Construction Algorithm, In Journal of the ACM, 23:

262-272, 1976.

[MSU94] K. Mehlhorn, R. Sundar, and C. Uhrig, Main-

taining Dynamic Sequences under Equality - Tests

in Polylogarithmic Time, to appear In Proceedings of

the .5th Annual ACM - SIAM Symposium on Discrete

Algorithms, 1994.

[SV94] S. C. Sahinalp, and U. Vishkin, Symmetry Breaking

in Suffix Tkee Construction, In preparation

[SV88] B. Schieber, and U. Vishkin, On Finding Lowest

Common Ancestors: Simplification and ParaReliza-

tion, In SIAM Journal of Computing, 17: 1253-1262,

1988.

[Vi85] U. Vishkin, Optimal Parallel Pattern Matching in

Strings, In ~n~ormation and Control, 67: 91-113,

1985.

[Vi91] U. Vishkin, Deterministic Sampling - A New Tech-

nique for Fast Pattern Matching, In SIAM Journal

of Computing, 20: 22-40, 1991.

~e73] P. Weiner, Linear Pattern Matching Algorithm,

In Proceedings of the latezstoc.final.4 .tez14th IEEE

Symposium on Switching and Automata Theory,

pages latex stoc.final.4.texl-l 1, 1973.

309

